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Solvable Markov random field model in color image restoration
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We propose a scheme for image restoration of full color images by means of a solvable probabilistic model
in the red-green-blue space. A special case of our solvable probabilistic model is equivalent to a multicompo-
nent Gaussian model in the statistical mechanics. Exact closed expressions of the evidence and the expectation
value of intensity at each pixel in our solvable probabilistic model can be obtained by using multidimensional
Gaussian integral formulas and a discrete Fourier transform. In the present paper, the degradation process is
assumed to be an additive white Gaussian noise. Hyperparameters are determined so as to maximize the
evidence that is expressed in terms of the partition function in our solvable probabilistic model. This work is
a pioneering work for the Bayesian approach to the color image restoration by means of the statistical-
mechanical technique.
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I. INTRODUCTION for brightnesg10]. However, a color image restoration algo-
rithm by using MRF models has not been proposed yet in
Probabilistic image processing is a very powerful ap-any color space.
proach and hence not only computer and mathematical sci- Some statistical physicists were also interested in the
entists but also statistical physicists are interested in such aBayesian information processing by means of a solvable
approach1]. In the probabilistic image processing, a proba-probabilistic model. Vicenteet al. [11] studied a belief
bilistic model is constructed by means of Bayes statistics an@ropagation algorithm for error-correcting codes by means of
usually has a Gibbs distribution. It was suggested that the solvable Ising model on a cactus tree. Nishimori and Wong
probabilistic image processing has a very close relationship12] studied a performance of Bayesian image processing by
to the spin glass theory in statistical mecharjitk Geman  means of an infinite range Ising model with random external
and co-workerg2,3] proposed a formulation for image res- fields and uniform interactions. They suggested that the high-
toration by means of Bayes statistics and the simulated arest performance of Bayesian image processing is given on
nealing. Their model is based on a Markov random field, inthe Nishimori line for each probabilistic model from an exact
which the state of a pixel depends only on the states of itinequality and some detailed calculations by using the rep-
nearest neighbor pixel§2]. Many investigations by the lica method. Nishimor{13] showed also that the Gaussian
Bayesian approaches in terms of the Markov random fieldsnodel is applicable to image restoration in gray-level mono-
were done to more practical applications in the image prochrome images and that image restoration framework by
cessing 4,5]. means of maximuna posteriori estimation in the Gaussian
Color image processing is one of fundamental and intermodel is equivalent to the Wiener filter. Molifd 4] pre-
esting problems in image and vision computing. Angelopousented some iterative algorithms for a hyperparameter esti-
los and Pitag6] dealt with a design of multichannel Wiener mation of a probabilistic model, in which treepriori prob-
filter, which is a familiar technique in the image processingability is assumed to be a conditional autoregres$ar)
for color image restoration based on a multichannel autoremodel or a simultaneous autoregressi8&R) model, in the
gressive model. Panjwani and Heal&} proposed an unsu- aid of a saddle point approximation. The CAR model is
pervised segmentation algorithm for color textures by usingquivalent to the Gaussian model in the statistical mechanics.
a Markov random fieldMRF) model with interactions be- Tanaka and Inoug¢15] suggested that the expressions of
tween different color planes in thRGB space. Here the some statistical quantities in both CAR and SAR models can
notationsR, G andB mean red, green, and blue, respectively.be exactly given by using the multidimensional Gaussian
Recently, some algorithms for color image segmentationntegral formulas and the discrete Fourier transform. They
based on the maximu posterioriestimation in MRF mod-  extended such a solvable probabilistic model to more general
els were also proposed in arfiu*v™* space, which is related solvable probabilistic models and gave an exact closed ex-
to the RGB values by nonlinear transformatiofi®,9]. The pression of evidence to estimate some hyperparameters only
components/* andv* carry the chromatic information and from a given degraded image.
the other componerit* can be regarded as the information  In this paper, we propose a scheme for the image restora-
tion of full color images by means of a solvable probabilistic
model in theRGB space by extending the solvable probabi-

*Electronic address: kazu@statp.is.tohoku.ac.jp; FAMR1-22-  listic model for the monochrome image restoration given by
217-5851. Tanaka and Inou¢l5]. In order to discuss about the most
TElectronic address: tsuyoshi@statp.is.tohoku.ac.jp fundamental problem in color image restorations and clarify
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their nature, we restrict our degradation process to an addi-

tive white Gaussian noise, which is one of the most populaPXF=f|a,v}= 7
degradation models in image processing. In Sec. Il, we con-

struct a solvable probabilistic model for the image restora- 1
tion of color images and derive an exact expression of evi- Xex% ) 2
dence to estimate hyperparameters and that of the rek
expectation value of intensity of each component in a color (2.9
at each pixel. In Sec. Ill, a practical algorithm and some

numerical experiments are given. Concluding remarks are
given in Sec. IV. where

prior( a,v)

> a’KK,fTC(K,K')"f),
"eK '

K

Il. SOLVABLE PROBABILISTIC MODEL FOR COLOR 1
IMAGE RESTORATION Zpriof @, V)= J exp( -5

> > aK'KrZTC(K,K’)VZ)dZ.
keK ek

We consider a color image on a square lattice
={(x,y)|x=01,...L,—1,y=01,...L,~1}. The lat-
tice is assumed to consist Of | pixels and to satisfy the (2.5
periodic boundary conditions, so that the lattice is on a torus.
Three components corresponding to three colors, namel¥,|ere fT
red, green, and blue, in a digital color image are assigned t
each pixel. The colors on a pixek,{y) in an original image
and in a degraded image are denoted by

+ oo + oo + oo
fx,y,red gx,y,red f dz= f,x f,oc o Jloo

f = fx,y,green and éxyE gx,y,green

X,y
fx,y,blue gx,y,blue X (xlygleL dzx,y,r(—:‘cf:i Zx,y,greerdzx,y,blue- (2-6)

is the transpose of vectdt and «, . and v are
Ryperparameters. The integral is defined by

respectively. Now, we introduce the notatith defined by

K={red,green,blde The configurations of the original im-

age and of the given degraded image are representdd b

:{fx,y,K|(va) elL, keK} and g:{gx,y,xl(xay) el, «

e K}, respectively. Each variablg, , , andg,, . take any

real number in the interval{«,+). In recovering the

original imagef from the given degraded imagg we use

somea priori properties of the original imagle We express =G, u Ot w1 X | Oxxr Oy yr = 7 Oxxr+10yy:

sets of random variables representing the original and the

degraded image byF={F,, (x,y)el, keK} and G

={Gyy..(x,y) eL, keK}, respectively. - Z5x,X’715y,y’_ Zéx,xﬁy,y’ﬂ_ Zéxw‘sy,y’fl
We adopt an additive white Gaussian noisg0,0%] so

that the conditional probability density function{Br=g|F

C(k,k") (k,k'eK) is a 3L|X3|L| matrix whose
y(x,y,,u|x’,y’,,u’) element is defined by

(XY, u|Clr, k") [X"y" ")

=f,o} is assumed to be [(%Y),(X",y') el, pu' €K]. (2.7
PH{G=g|F=f U}E—l exd — ng_sz Here 6, , is Kronecker’s delta. In the case of=2, thea
' Zoisd 0) 20?2 ' priori probability density function is equivalent to the one of
(2.1  the multichannel SAR model characterized by
where
I R . i, L
Znoisd 0)= (2 ?) 3112, (2.2 by~ Z(fx+1'y+fx‘1’y+fx'y+1+fx*y‘1)~N[o’a B
(2.9
—f[|?= —f 2, 2.3 - >
o=l (x,%EL K;K (@xyn™ Py @3 Here, Ois the three-dimensional zero vector ahd0,a !]
is a three-dimensional Gaussian distribution whose average
Hencel|-||? is the square norm. of each component is zero and covariant matrixis. The
The a priori probability density function for the original energy function of the multichannel SAR model is rewritten
imagef is assumed to be as follows:
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—2 Z a, of TC(k,k")%f

KEK

k' eK
= E z 2 o | f —E(f 1 +f 1
(WVel dek Jo O\ 4R xm e A

1
+ fx,y+l,x+ fx,yl,x)) ( fx,y,K’ - Z(fx+l,y,x' + fX*l,y,K’
+fx,y+1,x’+fx,y—1,x’))- (2.9

In the case ofy=1, thea priori probability density function

is equivalent to the one of the multichannel CAR model as

follows:

1?x,y_1?x4rl,y'\’~/\/’|:6y‘171], fx,y_f)x,y+l~-/\/’[61a71]-

(2.10
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(2.19

(a,v,0)=arg maxP{G=g|a,v,d}.

(a,v,0)

For the obtained estimateg », and o, the restored image
f={f.y.(x,y) L, keK} is determined by

Fry= f z,,.«PiF=2G=g,a,v,0}dz

[(x,y)el, keK]. (2.195

By introducing the unitary matriX) defined by

277pX 27-rqy

Ly )’

(2.1

(x,¥,k|U|p,q,k")= \/_ex;{—l

The energy function of the multi-channel CAR model is re- e matrixC(«,«') can be diagonalized as follows:

written as follows:

of TC(k,k")f

1
2.5 20
= E E 2 aKK[(nyK
(x,y)eL keK 7k
X(fx,y,x’_fx+l,y,:</)+(fx,y,:<_fx,y+1,x)
X (Fyyoa (2.1

Equations(2.10 and (2.8) mean that the coefficients,

X+ 1,y,;<)

- fx,y-%—l,x’)]-

(k# k") express the correlation between the different color
planes in theRGB picture information. We remark that both

<prq1ﬂ|U71C(K:K')U|p',qr,,U«’>
=0, w0t Op,p' Oq,q' NP, )

[(p,a),(p",q")el,u,u" eK], (2.17)

where

—1 1 2mp 1 27q ”1
A(p,q)=1-7co L —5C0 T, ) (2.189

SAR and CAR models for the monochrome image restoraand Z,,(«,v) can be expressed in the following form:

tion have been proposed by Moliha4].

In the Bayes formula, tha posterioriprobability density
function PfF=f|G=g,a,v,0}, that the original image i$
when the given degraded imagegsis expressed as

PH{F=f|G=g,a,v,0}

_ P{G=g|F=f,0}P{F=f|a,v} (212
fPr{G=g|F=z,cr}Pr{F=z|a,v}dz

An estimate of hyperparametess v, ando is determined so
as to maximize the evidence{@=g|a,v,o} [16-18:

P{G=g|a,v,0}= J P{G=g|F=z0}P{F=2Za,v}dz
2.13

The maximizers of evidence f=g|a,v,o} are denoted by
a, v, ando, such that

Zprior(avv)

—1/2

=(27-r)3|'-’2’de<2 > aK,K,C(K,K’)V)}

keK ek
=2m32 T {\(p,a)* deta)} 2
(p.g)eL
(2.19
where
Qred,red  @red,green  red,blue
a=| @®greenred greengreen Xgreen,blue| (2.20

Uplue,red  Xblue,green  Xblue,blue

By substituting Eqs(2.1) and(2.4) to Eq.(2.12), thea pos-
teriori probability density function is obtained as follows:
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P{F=f|G=g,a,v,0}= exd —H(flg,a,v,0)], (2.2

Zposterio( a,v,0)

where
Zposterio(avVvU)EJ exr[—H(z|g,a,v,(r)]dz, (2.22

and

H(flg,a,v,0)= —||f gl|>+ f

EK E aK,K’C(KlK,)V)f

KeER k' eK

1 -1
= { I+022 E aKKrC(KK)) g I+a’22 2 aKK,CKK))
20' keK " ck keK 7 ck
-1
I+022 E aKKrC(KK)) g}
keK " ck
-1
2 2 a, o Clr,k")" I+0'22 2 OZKKrC(KK)> 0. (2.23
keK 7 ck keK ek

The partition functionZ,oseriok @, v, ) is expressed in the following form:

keK ek

—-1/2
Zposteriok @, V,0) = <2w02)3L"2{de<|+022 2 @ Clr ") )]

K k' eK eK ek

Xexp{—%g ( 2 > a, . Clr,k")”

1
I+0'22 E aKK/C(KK)> g]

:(2770_2)3|L|/2 H {de[e_}_)\(p,q)va]}fl/Z

(p.g)eL
1 T v 1
xexp —5 2 {G'(P.OMP.A) aetoN(p.0) @] *C(p.O)} . (2.24
where
Greo( p,Q) Ox \y,red
- 1 2mpx 2
G(p,q)=| CoreedP:®) =0 ) Yxy.green | ox tp —i tqy). (2.29
Gpiue p,a) | |(X'y)6 Ox,y,blue X y
2m7px | 2wqy
GT(p q) \/—(E (gxyred gxygreengxyblue)ex% I—x +1 I—y )- (2-26)

andeis a 3xX 3 unit matrix. By using Eq92.2), (2.19, and(2.24), the logarithm of evidence can be expressed in the following
form:
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In(P{G=g| a,v,a'})=|n(

Zposterio( a,v,0) )

noisd ) Zprior( a,v)

:_Lln(Z’IT)_—|n[de<|+0'22 E @, Clr,k")”

keK ' ck
s

J

2 2 Qe K’C(K K )

' eK keK

k' eK

|+0'22 2 @, Clr,k")
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E E aKK’C(KK)

keK ' ck

o
) o

)

3|L| 1 ) 1
== @m-3 2 In{defe+o?\(p,a)"al}+5 > In{defA(p.q)"al}
(Pa)eb (p.a) el
1 - N
3 o2, C(PONP.Q) afet oN(p.)"a] 'C(p.a). (2.27
|
By replacing the summation |1/|E(p qeL by the integral . 1 ~ ~ S
1/4w2[2"d6f3™d ¢, the third term in the right-hand side of o? =3, E) t{o e+ oN(p,q)"a] "}
Eq. (2.27) can be rewritten as follows:
1 N -
+a7 . 2 Glp.a{o'\(p,a)*
1 3||—| (p.g)el
=T In{def A (p,q)” - - o
2|L q2 tdetA(p.a)"al} X o?[e+ N\ (p,q)"a] *G(p,q). (230
v 1 . 2.
> = The restored imagéin Eq. (2.195 can be expressed as fol-
= IN[\(p,q)]+ =In[de
AT o2, MNP+ FI[deta)] o
-1
= 1+a2> 2 a,  Clr,k)’| 9 (23D
3v (27 (27 1 keK ek
——zf f In(l—zcosﬁ
mJ0 J0 so that we have
1 1 R
- §c05¢ dédo+ Eln[de‘(a)] fx.y.red
2 1 ~ ~ A
120 1 Ty green = oo, TP al™
= — _— —_ z ( ’ )EL
3vin(2)+ - + 2In[de(a)], (2.28 Fyyblue P
2wpx  2mwqy
where is the Catalan constant, namefy=0.915% . . . . x| co§ ——+ ——|ReG(p,q)
" .. X y
For a fixed value ofv, the conditions for an extremum of
_ _ - 2mpx 2 -
PiG=g|a,v,0} at @=a and o=0 can be reduced to the +sin ThX | cmay Im&(p.q)|.
following simultaneous equations: Ly Ly
(2.32

. NUMERICAL EXPERIMENTS

Y ) vr-1 In this section, we give some numerical experiments for
(ME):EL p.a)Tetoi(p.a)al ) the original images given in Fig. 1. In the numerical experi-
ments, we treat the full color digital images with 24 bits as
1 > , the original and the degraded images. The value of hyperpa-
+ m (MZ)H G'(p,a) o ,{)\(p,q) rametero set in producing the degraded imag@ an addi-
o tive white Gaussian nois#[ 0,0%] is denoted by the notation
. R o*. The degraded imageasproduced from the original im-
Xafet+a®\(p,q)"a]l 1}  G(p,a), (229  ages by settings* =40 in the degradation proce€1) are
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FIG. 1. (Color) Original images(a) Home.(b) Mandrill.

The estimates of hyperparameters v, ando are deter- andb(0)«1.

mined so as to maximize the logarithm of evidence, Step 2 Updater«r+1; and
IN(P{G=g|a,v,0}), given by Eq.(2.27) and the restored

im?ﬁ;ef is ott_JtaiIneId b)_/t r:Jsir;g Ec{|2.3|2).t_ For a fixed value of Breared”)  Bredgrechl)  Bred.pudl)

, the practical algorithm for calculatin
v P 9 9 a(r)= agreen,reﬁr) agreen,gree(mr) agreen,blugr)
[2!( V),(}( v)]=arg maxP{G=g|a,v,0} (3.9 @piue,red ) Bplue,grechl)  Ablue,biud )
(a,0)

is given as follows. 2 {)\(p a)"[b(r—1)e+N(p,q)”

- L
Step 1 Calculate the discrete Fourier transfo@(p,q) of l l ®
the given degraded imaggby means of Eq(2.25. Setr 1
-0, xa(r =11 Y+ gy 2 G'(p.q)
133
J
a0)—|2 1 3 x| —{b(r=1)\(p,a)"a{b(r—1)e
1 1
2 2

FIG. 2. (Color) Image restoration(a) De-
graded imagey generated from the original im-
agef in Fig. 1(a) by the additive white Gaussian
noiseM 0,4(]. (b) Restored imagé for the pro-
posed model(c) Restored imagé for the multi-
channel CAR model§=1). (d) Restored image
f for the multichannel SAR modelf=2).
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FIG. 3. (Colorn Image restoration(a) De-
graded imagey generated from the original im-
agef in Fig. 1(b) by the additive white Gaussian

noise M 0,4¢]. (b) Restored imagé for the pro-

posed model(c) Restored imagé for the multi-
channel CAR model§=1). (d) Restored image
f for the multichannel SAR modelE=2).

-1
émaﬁ : (3.2

+Mpﬂydﬂ}
a=a(r—1)

1
b(r)y—r— > t{[b(r—1)e+\(p,q)"a(r—1)]"}
L] (p&7eL

1 R

+=— > G'(p.gn(p,g)¥a(r—1)2
IL| (payeL

X[b(r—1)e+\(p,q)*a(r—1)]"2G(p.q), (3.3

3/L 1
qu—%;QO—— >

In{defe+b(r)
2 (pipyeL {

12vy
XN(p,g)’a(r)]}—3vIn2+ —

1 1 .
+5In{defa(nl}-5 X G'(p.a)r(p.a)’
(p.g)eL

X ale+b(r)\(p,q)"a(r)] *G(p,q). (3.4

Step 3 Update o(v)—b(r), a(v)—a(r), and R—r.
Stop if it is satisfied that

aK|K,(r)—aK,K,(r—1)‘

e(r)=
«=red,green, blug.’ — red.green.bluj aK,K'(r - 1) ‘
b(r)—b(r—1) .,

and go to step 2 otherwise.

The logarithm of evidence |p{G=g|a(v),v,a(»)} is ob-
tained by using the following substitution:

A R 1 R N
L£(g.a(v),v,0(v))= ITlln p{G=gdla(v),v,o(v)}—c(R).

(3.6

The convergence behavior ofr) in Eg. (3.5 and the one of
c(r) in Eq. (3.4) are given in Figs. 4 and 5 for the degraded
images g given in Figs. 2a) and 3a) by setting v
=1.356 00. The behavior af(r) shows the convergence of
a(r) andb(r) in the iterative procedure and the oneodf)
suggests the achievement of the maximization of the loga-
rithm of evidence in the iterative procedure. We have also
checked numerically that the iteration procedure converges
to the same values irrespective of some different choices in
the initial valuesa(0) andb(0) in the step 1 of the above
algorithm. Moreover, for various values of hyperparameters
« and o, the values of£(g,a,v,0) calculated for the de-
graded imagey in Fig. 2(a) are given in Tables | and IlI.
Tables | and Il show us the uniqueness of the maximum
point of the evidence with respect #® and o for a fixed
value of v. There are many choices for halting criterion in
the above algorithm. In the present paper, we choose the
simplest choice, because the same results for some different
choices in numerical experiments are obtained for a degraded
imageg. We check not only Eq(3.5) but also the following
criteria:
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(a) (a)
1.0 T T T T T T T T T —-9.90 T J T T T T T T T
08 r B 10.()()—f 4
- 4 —: i
0.6 . 410.10: ]
e(ry | | c(r) ]
0.4 E —10.20% E
0.2 . B ~10.30} 4
i 4 - 4
0 1 1 1 —10.40 2! L 1 1 1 1 1 1 L
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
(b) r (b) T
1.0 T T T T T T T T T —10.10 T T T T T T T T T
0.8 1 —=10.20F 4

9]
—~
=3
~— O
(o]
T T
1 L
o
]
=N =
~— o
o
(=)
\
I 1

i —10.50

—10.60

0 20 40 60 80 100120 140 1(130 léO_'ZOO

0

0 20 40 60 80 100 120 140 160 180 200

r T
FIG. 4. Convergence of(r) in the iterative process for the FIG. 5. Convergence of(r) in the iterative process for the
degraded imageg given in Figs. 2a) and 3a). (a8 Home (v  degraded imagey given in Figs. 2a) and 3a). (@ Home (v
=1.356 00).(b) Mandrill (v=1.017 00). =1.356 00).(b) Mandrill (»=1.017 00).
A (N —a,,(r=1)12 Noa sl s
et o o 2 (1) 2 (1)) a—a(), ooy, (3.10
+[b(r)—b(r—1)]2<10 4, (3.7  where
c(r)—c(r—1) B v—argmaPyG=gla(v),v,a(v)}. (3.1
A Y T (3.9 v
c(r)
In the numerical experiments, we calculate the values of
and a(v) ando(v) by means of the above algorithm for various
) » values ofr and determine the so as to maximize the loga-
[e(r)—c(r—1)]"<10"". 3.9 rithm of evidence £(g, &(v),v,a(v)), defined by Eq(3.6).

The number of iterations is the similar order Rsfor Eq The evaluation of the value in this procedure is explicitly
(3.5). In order to show the convergence of the iterative pro-Shown in Table [1I. For the obtained estimaies, anda,

cedure(3.2) and(3.3), we give in Table Il values of}(v), the restored image={f,. ,} is determined by

a(v), £(g,a(v),v,c(v)), andR, which are obtained by ap- .
plying the above practical algorithm for various valuesvof fxy« argmin E(H—J Zyy,k
to the degraded imagg given in Fig. Zb). We check nu- n=01....25

merically that the logarithm of evidencé(g,«,v,0), has a L 2

unique maximum value with respect to various values of X Pr{F:z|G=g,a,v,cr}dz) . (3.12

v, andea for each degraded imaggas shown in Tables [-1lI.

In the proposed model, the estimates of hyperparameters, The estimation of the restored imabi Eq. (3.12 is called
o, andv are obtained by using the following substitution: thresholded posterior mean estimatidr2,19,2Q. The inte-
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TABLE I. Values of L(g, &, v,0) obtained for various values @fi¢q reqs ¥red,green Ared,biuer @Ndao in the degraded imagggiven in Fig.

2(a) when we setv=1.356 00.

@ @green, greeir 0.03452, apjye piue™ 0.02752, treq greed™ Agreen, red™ — 0.01495,
Qred,blue— Xblue, red™ O-OOOQOvagreen,blue: Aplye,greem 0.02318

Qred,red Qred,red Qred,red Qred,red Xred,red Xred,red Xred, red

=0.018 =0.019 =0.020 =0.021 =0.022 =0.023 =0.024
o=30 —10.077 —10.084 —10.092 —10.100 —10.108 —10.116 —10.123
o=35 —9.969 —9.969 —-9.971 —-9.974 —-9.977 —9.981 —9.984
o=40 —-9.971 —9.967 —9.966 —9.966 —9.967 —9.968 —9.969
o=45 —10.035 —10.029 —10.026 —10.024 —10.023 —10.023 —10.023
o=50 —10.133 —10.126 —10.122 —10.119 —10.117 —10.116 —10.115

(0) areq red 0.01951, @green, greer 0-03452,avpyye, biue= 0.02752, argreen, red — 0.01495,
Qred,blue— Xblue,red— O-OOOQO!agreen,blue: Xplue,greem 0.02318

Qred,green Qred,green Qred,green Qred,green Qred,green Qred,green Qred,green

=-0.017 =-0.016 =-0.015 =-0.014 =-0.013 =-0.012 =-0.011
a=30 —10.074 —10.079 —10.087 —10.096 —10.107 —10.117 —10.127
o=35 —-9.971 —9.969 —-9.970 —9.972 —-9.977 —9.981 —9.986
o=40 —-9.977 —-9.970 —9.967 —9.966 —9.966 —9.968 —9.970
o=45 —10.042 —10.033 —10.027 —10.024 —10.023 —10.023 —10.023
o=50 —10.141 —10.130 —10.124 —10.120 —-10.117 —10.116 —10.115

(©) ared,red™0.01951, green, greeir 0-03452, atpiye biue= 0.02752, dreq greed™ Agreen, red — 0.01495,
ablue,redzO-OOOQOvagreen,blufablue,green=_0-02318

Qred,blue Xred,blue Qred,blue Xred,blue Xred,blue Xred,blue Qred,blue
=-0.001 =0.000 =0.001 =0.002 =0.003 =0.004 =0.005
o=30 —10.076 —10.081 —10.088 —10.096 —10.105 —10.114 —10.123
=35 —9.970 —9.969 —9.970 —9.972 —9.976 —9.980 —9.984
o=40 —9.973 —9.968 —9.966 —9.966 —9.966 —9.968 —9.969
o=45 —10.037 —10.031 —10.027 —10.024 —10.023 —10.023 —10.023
o=50 —10.136 —10.128 —10.123 —10.120 —10.118 —10.116 —10.116
grand of [z, P{F=2G= g,a,v,0}dz is calculated by &= 1 [f—FJ2
means of the right-hand side of E@.32 in Eqg. (2.2]). In 3L

the CAR and the SAR model, the hyperparameteshould

be setto 1 and 2, respectively. The estimates of hyperparan&—n d
eters,a and o, are obtained by using the following substitu-
tion:

ve—1, a—a(l), o—o(1l) (CAR mode),
(3.13

_ If-gl?
Asnr=10l0g T (dB)

and are given in Table IV. For the case of the CAR model (
=1) and the SAR model =2), the estimated values of

hyperparametera and o and the values of(f,f) andAgyr

ve2, a—a(2), o—a(2) (SARmodel, are given in Tables V and VI, respectively. The degraded

(3.149 imagesg and the restored imadefor the original image in
o* =40 are given in Figs. 2 and 3.

for the CAR and the SAR mode_l, respectively. o Before closing this section, we give a comparison be-
For the degraded imagesobtained from the original im-  tween the present method and a familiar technique of filter
agesf in Fig. 1 by settingo* =30, 40, and 50 in the degra- theory in image processing. As one of familiar methods of
dation proces€2.1), the estimated values of hyperparametersilter theory, we have a constrained least squares filter. We
«, v, ando and the values of assume that the degradation process is the additive white
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TABLE II. Values of £(g,a,v,0) obtained for various values @fgeen, green @green,blue Xbiue,biues @NA o in the degraded imagg given
in Fig. 2(a) when we setv=1.356 00.

@ @red,red™ 0.01951, apye, piue™ 0.02752, areq, greei™ green, red™ — 0.01495, req piue™ Abiue,red™ 0-00090, argreen biug™ biue, gree™ —0.02318

Qgreen,green Qgreen,green Qgreen,green X green,green X green,green Qgreen,green Qgreen,green

=0.032 =0.033 =0.034 =0.035 =0.036 =0.037 =0.038
=30 —10.080 —10.075 —10.082 —10.093 —10.105 —-10.117 —10.129
o=35 —9.987 —-9.971 —9.969 —-9.971 —9.976 —9.982 —9.987
o=40 —9.998 —9.976 —9.968 —9.966 —9.966 —9.968 —-9.971
o=45 —10.066 —10.041 —10.030 —10.025 —10.023 —10.023 —10.024
a=50 —10.167 —10.140 —10.127 —10.121 —10.118 —10.116 —10.116

(b) @red red™ 0-01951, agreen, gree 0-03452, arpiye biug™ 0.02752, @req greei™ Xgreen red — 001495,
Xred,blue— ablue,red:O-Ooogorablue,green: —0.02318

Qgreen,blue Qgreen,blue Qgreen,blue Qgreen,blue Qgreen,blue Qgreen,blue Xgreen, blue

=-0.025 =-0.024 =-0.023 =-0.022 =-0.021 =-0.020 =-0.019
=30 —10.075 —10.080 —10.089 —10.100 —-10.111 —10.122 —10.133
o=35 —-9.971 —9.969 —-9.970 —9.974 —-9.979 —9.984 —9.990
o=40 —9.976 —9.969 —9.966 —9.966 —9.967 —9.969 —9.972
o=45 —10.041 —10.031 —10.026 —10.024 —10.023 —10.023 —10.024
o=50 —10.140 —10.129 —10.123 —10.119 —10.117 —10.116 —10.116

(€) areq,red™0.01951, agreen greeir 0-03452, dreq, greer™ Agreen,red™ — 0.01495, @ eq biue™ Abive, red™ 0-00090, dgreen, biug™ Xgreen,biue —0.02318

®plue,blue ®plue,blue Xplue, blue ®plue,blue Xplue,blue Xpjue, blue Xpjue, blue

=0.025 =0.026 =0.027 =0.028 =0.029 =0.030 =0.031
=30 —10.076 —10.076 —10.083 —10.092 —10.101 —-10.111 —10.120
o=35 —-9.977 —-9.970 —-9.970 —-9.971 —-9.974 —9.978 —9.983
o=40 —9.985 —-9.973 —9.968 —9.966 —9.966 —9.967 —9.969
o=45 —10.052 —10.037 —10.029 —10.025 —10.024 —10.023 —10.023
o=50 —10.151 —10.135 —10.126 —10.121 —10.119 —10.117 —10.116

Gaussian noise in Eq2.1). When a degraded imaggis  Where
given, the constrained least squares fi[23] is formulated
in the RGB space as follows:

lz=glli= 2 (Zeyu—Geyd> (316
(x,y)elL
f=arg min (E ||C(K,K)Z||2), By introduce Lagrange multipliery, to ensure the con-
z||z-gl=|L|o*2 (keK) " € strained conditior|z—g||2=|L|o*? and applying the dis-

(3.15 crete Fourier transform to the matr(«, ), we have

1
2 0 0
2 1+ Yred (P,Q)
fx,y,red 1
fx,y,green :i 2 0 PN 0
3 IL| (oL 1+ Ygreed (P, 0)
X,Y,blue
1
0 0

1+ Yo (P, 9)?

X, 27Tﬁ/)lm é(p,q)} (3.17

X
L, L,

2mwpx  2mwqy
co +
Ly Ly

. 2
)ReG(p,q)+sin

046142-10



SOLVABLE MARKOV RANDOM FIELD MODEL IN COLOR.. ..

PHYSICAL REVIEW E 65 046142

TABLE IIl. Values of o(v), a(v), £(g,a(v),v,0(v)), andR obtained for various values of in the
degraded imagg given in Fig. 2a). Here,R is the number of iterations in the proposed algorithm.

Xred,red

2“red,green &red,blue
v (’;'(V) &( v)= 2Vgreen,red 2Vgreen,green Zl’green,blue L(g, ;1’( v),v, 8'( v)) R
&blue,red &blue,green &blue,blue

0.00514 —0.00269 —0.0005

1.0 35.637 —0.00269 0.00708 —0.00420 —9.96675 376

—0.00057 —0.00420 0.0065

0.01079 —0.00722 —0.0002

1.2 36.953 —0.00722 0.01734 —0.01123 —9.95913 523

—0.00025 —0.01123 0.0146

0.01951 —0.01495 0.0009

1.3560 37.570 —0.01495 0.03452 —0.02318 —9.95767 653
0.00090 —0.02318 0.0275
0.02310 —0.01829 0.0015

1.4 37.713 —0.01829 0.04193 —0.02837 —9.95777 692
0.00153 —0.02837 0.0329
0.05063 —0.04548 0.0080

1.6 38.253 —0.04548 0.10224 —0.07092 —9.96030 883
0.00800 —0.07092 0.0757
0.11355 —0.11331 0.0288

1.8 38.677 —0.11331 0.25364 —0.17874 —9.96525 1093
0.02881 —0.17874 0.1788
0.26091 —0.28542 0.0919

2.0 39.029 —0.28542 0.64120 —0.45685 —9.97166 1320
0.09199 —0.45685 0.4344

The Lagrange multipliery, are determined so as to satisfy

the following equations:

* 2

[oa

Y=

|_||_\

) e

Z Gup.a)?

A(p,q)*

[1+ 7. (p,9)%T?

[keK].

(3.18

Yreds Ygreen @Ndypue, and the values of(f, f) andAgyrare

given in Table VII. The restored |mageby means of the quantity 6, , as

constrained least squares filter for the degraded imgdes
Figs. 2a) and 3a) are given in Fig. 6. These results are too
blurred and it is shown that the results by our proposed hy-
perparameter determination method constructed by means of
the maximization of evidence are better than those by the
familiar filter theory. Though the constrained least mean
square filter can be regarded as a linear filter, we have a
median filter and a mode filter as familiar nonlinear filters in
signal processing. A vector median filft4], a generalized
For the degraded imagegsobtained from the original images vector directional filtef25] and an edge-preserved mode fil-
fin Fig. 1 by settings* =30, 40 and 50 in the degradation ter [26] were proposed as an extension of the median filter
process(2.1), the estimated values of Lagrange multipliers and the mode filter for vector-valued signals, respectively. In
a generalized vector directional filt§25], we introduce a
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TABLE IV. Values of o, v, a, &(f,f) and Agyr (dB) for the proposed model.

Qred,red Qred,green  Xred,blue

o o - X . v (.9 Asnr(dB)
a=| @areenred Xgreen,green Xgreen,blue

Qplue,red  Xblue,green  Xblue,blue

(a) Home
002322 —0.01705  0.0003
30 28.728 —0.01705  0.03678 —0.02410 1.40511 155.80 7.27648
0.00039 —0.02410  0.0292
001951 —0.01495  0.0009
40 37.570 —0.01495  0.03452 —0.02318 135600 20451 8.45540
0.00090 —0.02318  0.0275
001694 —0.01347  0.0011
50 45.836 —0.01347  0.03265 —0.02203 131700  253.62 9.26676
0.00117 —0.02203  0.0257
(b) Mandrill
0.00697 —0.00830  0.0039
30 29.299 —0.00830  0.01755 —0.01138 1.01800  304.91 4.34334
0.00390 —0.01138  0.0096
0.00634 —0.00759  0.0037
40 38.133 —0.00759  0.01692 —0.01136 1.01700  416.86 5.35158
0.00376 —0.01136  0.0098
0.00622 —0.00752  0.0039
50 46.494 —0.00752  0.01743 —0.01197 1.02400  519.96 6.14037
000393 —0.01197  0.0104
. according to the ordering of elements in the set
Oxy= , ,2 A(9xy Ixry)s (3.19 {fo'y/|(X’ Y') eWy it
(X" y" ) ewyy

<0< <o)< -<6Q). (3.2

whereA(gxy,gX ') denotes the angle between the vectors_l_h first K terms of the ordering sequence,

Oy and Gy, 0<A(gxy Goy)<m and w, “(1)  2(2) (k)

={(x,y )X =x=1xx+1,y'=y—1y,y+ 1} We deflne Gy Gy - ,gx, /1, constitute the output of the gen-

an ordering of elements in the s{ej (Xy") ewy o} as eralized vector dlrect|onal filter. We define the set of the first
x',y' y X,Y.

follows: k terms of the ordering sequengg{}|i=1,2, ... k}. From _
the firstk=7 terms of the orderlng sequence for each win-

N i . dow w,, the color {yy red Txy.green Txy.biud TOF the re-
gy=g@=---=g¥)=---=<g{¥, (3.20  stored imagef is determined by means of am-trimmed
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TABLE V. Values of o, a, &(f,f) andAgyg (dB) for the multichannel CAR model=1).

Qred,red Qred,green  Fred,blue

o o a=| CQgreensred Xgreen,green (green,blue &(f,1)
~ - ~ Agnr(dB)
Aplue,red  Xblue,green  Xblue,blue
(@) Home
0.00594 —0.00293 -—0.00081
30 26.670 —0.00293 0.00709 —0.00393 176.82 6.72690
—0.00081 —0.00393 0.0065,
0.00514 —-0.00269 —0.0005
40 35.713 —0.00269 0.00708 —0.00420 227.12 7.99997
—0.00057 —0.00420 0.0065,
0.00466 —0.00260 -—0.0003
50 44.144 —0.00260 0.00732 —0.00450 276.16 8.89690
—0.00039 -0.00450 0.0066,
(b) Mandrill
0.00649 —-0.00753 0.0034
30 29.172 —0.00753 0.01595 —0.01030 304.37 4.35106
0.00347 —0.01030 0.0088,
0.00590 —-0.00688 0.0033
40 38.006 —0.00688 0.01536 —0.01027 416.06 5.35991
0.00335 —-0.01027 0.0089
0.00558 —0.00651 0.0033
50 46.307 —0.00651 0.01511 —0.01033 518.86 6.14950
0.00332 —0.01033 0.0092
means filter @¢=1/9) after re-ordering the sefg{)| i  directional filter for the degraded imagesin Figs. 2a)

=1,2,...k} for the magnitude. We give in Table VIl and 3a). We also did some numerical experiments by means
thevalues of &(f,f) and Agyg in the generalized vector Of @ vector median filtef24] and obtained worse results
directional filter for the degraded imageg obtained than those by the generalized vector directional filter.
from the original image$ in Fig. 1 by settinge* =30, 40, In an edge-preserving filter[26], we calculate the
and 50 in the degradation proce8sl). We give in Fig. 7 the  restored image’ ={£,'(’y|(x,y) elL}intheL*a*b* represen-
restored imagef by means of the generalized vector tation

> Gy exp—al(x—x)2+(y—y)2-Bllgy,— gy |1}
-, (x",y")elL
z, = : : , (3.22
> exp—al(x=x)2+(y=y")?1-Bllgy,~ gy |}

(x".y")eL
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TABLE VI. Values of o, a, &(f,f) andAgyg (dB) for the multichannel SAR model/=2).

Qred,red Qred,green  Fred,blue

o o a=| CQgreensred Xgreen,green (green,blue E(f,f)
~ - ~ Asnr(dB)
Aplue,red  Xblue,green  Xblue,blue
(@) Home
30 30.000 —0.20533 0.44136 —0.31119 162.40 7.09628

0.20098 —0.20533 0.0567§

0.05679 —0.31119 0.3058

0.26091 —0.28542 0.0919
40 39.030 —0.28542 0.64120 —0.45685 214.53 8.24766
0.09199 —0.45685 0.4344

0.33004 —0.37709 0.13041

50 47.416 —0.37709 0.85882 —0.60620 267.42 9.03658

0.13047 —0.60620 0.5603
(b) Mandrill

0.53472 —1.09612 0.7334

30 33.093 —1.09612 2.42766 —1.68841 379.64 3.39126
0.73344 —1.68841 1.1987
0.69536 —1.47065 1.0024

40 42.761 —1.47065 3.38804 —2.39807 544.34 4.19273
1.00241 —2.39807 1.7302
0.78080 —1.68688 1.1499

50 51.327 —1.68688 4.03726 —2.86030 683.62 4.95187
1.14999 —2.86031 2.0678

after replacing the degraded imagen the RGB represen- IV. CONCLUDING REMARKS

tation by the image’ ={gy ,[(x,y) € L} in theL*a*b* rep- In this paper, we have proposed a solvable MRF model
resentatior{10]. The restored imagéis obtained from the for image restoration of full color images. The framework of
image ' by using the inverse transformation from the the hyperparameter determination has been formulated by
L*a*b* representation to thRGB representation. We give means of the maximization of evidence. The exact expres-
the values ofé(f,f) and Agyg in the edge-preserved mode sion of the evidence and the restored image for a given de-
filter in Table IX for the degraded imagegobtained from graded image have been obtained. The deterministic equa-
the original image$ in Fig. 1 by settingr™ =30, 40, and 50 tions for hyperparameters have been derived exactly. The
in the degradation proce$g.1). The restored imagekby  proposed model includes both the multichannel CAR model
means of the edge-preserved mode filter for the degradeahd the multichannel SAR model for color image restoration
imagesg in Figs. 2a) and 3a) are given in Fig. 8. In the as a special case. Some noise could not be erased by the
nonlinear filters, the edges tend to be preserved and are notultichannel CAR model, while the most of all noises have
too blurred; some noises also remain. It is shown that théeen suppressed by the multichannel SAR model. On the
results by our proposed hyperparameter determinationther hand, the contours of the image remain by the multi-
method constructed by means of the maximization of evichannel CAR model, though the restored image has been
dence are better than those by the familiar linear filter theorplurred by the multi-channel SAR model. However, the pro-
and also by the familiar nonlinear filter theory. posed probabilistic model gives good results for the image
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restoration of full color images. In the restored image, thepriginal imagef and the degraded imageIn designing their
major contours are conserved and the most of all noises aggptimal filter, they have to estimate a statistical correlation
erased. between the original imageand the degraded imageThey
All hyperparameters in our proposed probabilistic modelhaye ysed the original imageto determine the coefficients
are determined automatically only from a given degradedy ihejr filter, which correspond to the hyperparameters in
image. Particularly, the hyperparameter our proposed model. Moreover, we have compared the re-
sults by our proposed method with those by some nonlinear
Credred  Fred.green  red,blue filters that are referred as the generalized vector directional
a—=| @®greenred Fgreen,green Xgreen,blue filter [25] and the edge-preserved mode filf@6]. In the
nonlinear filters, some noises still remain in the restored im-
ages and the mean square error is not so good though the

edges are preserved.

expresses a correlation between different colors. One of im- \4i0 et al.[8] and Kang and Rof®] constructed a proba-
portant points of color image processing is how we treat &jlistic model not in theRGB space but in the *u*p*

correlation and an interaction between different color planesSpace for color image segmentation. It is known that the

Actually, the results obtained in our numerical experiment -
Y P 3 *u*v* color space and thie* a* b* color space are similar

show that the amplitude of interactions between differerrﬁ human color perception capabilifga]. In the Bayesian
color planes has the similar order as the ones in the sa 8 P b P ) Y

color planes. approach of a probabilistic model for color image restora-

In our numerical experiments, we have given a comparilion: the degradation process and thepriori probability

son between the present method and some linear and nonlifliStribution should be assumed in the same color space as
ear filters[23-26. We have shown that the results by our €ach other. If these probabilistic distributions are given in the
proposed hyperparameter determination method constructélifferent color space of each others, the corresponding en-
by means of the maximization of evidence are better tha®rgy function in thea posterioriprobability distribution has
those by the familiar filters. In the constrained least square¥ery complicated structure and it is difficult to treat it ana-
filter given in Eq.(3.19), it is difficult to treat correlations lytically. It is easy to construct a solvable probabilistic
between different planes in tHRGB space, though we be- model, which is corresponding to the proposed model, in the
lieve that color images should have correlations between dift*u*v* color space or in the.*a*b* color space if the
ferent planes in th& GB space. Our proposed method in the degradation process is given as an additive white Gaussian
present paper can easily treat such correlations between difoise in theL*u*v* color space or in thé.*a*b* color
ferent planes in th&GB space, as a 83 matrix a. It is  space.

interesting to compare the results by our proposed method Moreover, a scheme proposed by Kang and Rahin-

with the constrained least squares filter constructed in thereases the performance of segmentation by introducing not
other color representation where the different planes have nonly a smoothing factor but also an edge-preserving factor in
correlation with each other. Angelopoulos and Pjisdealt  the energy function. Also in the present model, the perfor-
with a design of multichannel Wiener filter in theGB  mance of color image restoration can be increased by intro-
space, based on a multichannel autoregressive model awmldicing an edge-preserving factor, for example, line fields.
familiar signal processing techniques. Their formulation in-Jeng and Woodq21,22 proposed a compound Gauss-
cluded correlations between different planes in R&B  Markov random field model which is constructed by intro-
space. However, their main purpose is to design an optimalucing line fields as Markov random fields to Gaussian
filter that gives us the least-square estimate of the originainodel for gray-level monochrome image restoration and
imagef and their method is based on the minimization of ashowed that the model gives us high performance in image
statistical average in the mean square error between threstoration. However, it is difficult to treat such probabilistic

Aplue,red  Xblue,green  Xblue,blue

TABLE VII. Values of yiedq, Ygreen Vblues &(f,F) and Agng (dB) in image restorations by using the
constrained least squares filter.

a* Yred Ygreen Yblue g(f,f) Asng (dB)
(a) Home
30 35.035 23.593 41.527 242.99 5.34639
40 100.175 77.449 228.707 342.24 6.21913
50 510.726 502.799 2984.813 521.14 6.13898
(b) Mandrill
30 7.718 4.424 4.859 506.70 2.13748
40 24.024 10.641 13.788 642.96 3.46964
50 134.322 31.970 59.829 767.42 4.44971
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(a) (b)

FIG. 6. (Color) Image restorations by using
the constrained least squares filtea) Restored

imagef for the degraded imaggin Fig. 2a). (b)
Restored imagéfor the degraded imaggin Fig.
3(a).

FIG. 7. (Color) Image restorations by using
the generalized vector directional filtek€7, «
=1/9). (a) Restored imagé for the degraded im-
ageg in Fig. 2a). (b) Restored imagé for the
degraded imagg in Fig. 3a).

FIG. 8. (Color) Image restorations by using
the edge-preserved mode filtera€2.0, B
=0.000 005 0).(a) Restored imagé for the de-
graded image in Fig. 2a). (b) Restored imagé
for the degraded imagg in Fig. 3a).

models with line fields or segmentation fields exactly and we
have to employ a statistical-mechanical approximation. Th'?ions by using the generalized vector directional filté=(7, «
is left as a future problem. —1/9)

In the present paper, we have assumed the additive white "
Gaussian model as a degradation process. The additive white (5D Agyr (0B)
Gaussian noise is the most popular noise. Generally, the deg-

TABLE VIII. Values of &(f,f) and Agyg (dB) in image restora-

radation process treated in image processing is given by (@ Home
30 422.01 2.94893
40 572.86 3.98198
Ox,y.«x— 2 2 <K|B(lx_x’|1|y_y’|)|K,>fx’,y’,x’ 50 756.19 4.52225
(x",y")elL «'eK
~N[0,02] [(xy)el, keK]. (4.2) (b) Mandrill
30 953.80 —0.60954
40 1095.81 1.15413

Here, B(|x—x'[,|ly—Y’'|) is a 3x3 matrix and denotes ab- 50 1264.30 228152

lurring noise. On the other handy[0,0%] is an additive
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TABLE IX. Values of &(f,f) and Agyg (dB) in image restora- TABLE X. Values of V, .[f] («,«"=red,green,blue).
tions by using the edge-preserved mode filtex=(2.0, B
=0.0000050). k"=red K"=green «"=blue
* 2 (@) Home
7 & Asr (0B) x=red 100.97 1525.52 2643.45
(a) Home k=green 1614.90 150.75 919.53
30 293.26 452964 k= Dblue 2697.07 883.76 133.72
40 492.25 4.64058
50 740.90 4.61095 (b) Mandrill
k=red 546.98 3807.21 6099.80
(b) Mandrill k=green 3984.93 790.69 1853.35
30 435.35 2.79668 x=Dblue 6283.69 1859.52 794.86
40 636.10 3.51619
50 883.57 3.83760

this general case, we have to estimate also the mB&{rixy)

as hyperparameters. This is also left as a future problem.
white Gaussian noise. The case treated in the present paperFinally, we explain a motivation of owua priori probabil-
corresponds to the one in settindx|B(x,y)|«’) ity density function in Eqs(2.4), (2.5), and(2.7) and men-
= Ox,00y,09x,« - Itis believed that the additive white Gauss- tion a generalization of our proposed model. In the proposed
ian noise given in Eq(2.1) is realistic in the case that a model in the present paper, the expression of the evidence
degraded imageg is produced from an original image by can be calculated analytically and the iterated algorithm to
changing the grade of each pixel to another grade by a proldetermine the hyperparameters can be given easily. As one of
ability independently of the other pixels. For a more realisticmore general cases, we can consider the follovangriori
application, we have to treat the degradation pro¢4ds. In probability density function:

KEK cK k" eK k" eK

[ ex p(—-z S S S R ’"w””m)z) |

ex;{—— 2 2 2 2 R:”KKWfTA(KK K K’”)”f)

plF=f{RE 5"} )= 4.2)

keK w/cK k" eK k" eK

instead of Eqs(2.4), (2.5), and(2.7). Here,A(x,k’, k", k")
(k6" k", k"eK) is a 3JL|x3|L| matrix whose
(x,y,u|x",y", ;") element is defined by

N| =

E 2 Z 2 ’Rz”KKWfTA(K k' k" k")%f

K "eK " eK

-2 3 2 2 IR

<nya/-L|A(K'K,:K”,K’”)|X,yy,yﬂ,> (xy)el wek k'eK K"K k" eK
1 -
XX'5 76’('#5’(/”“/_ Z&K/r'#a "o X fX,y,K 4(fX+1,y,K”+fX—l,y,K”+fX,y+1,K”
+ fx,y—l,K”) ( fx,y,K’ - Z(fx+1,y,;<”’+ fx—l,y,KW
><(5x,x’+15y,y’+5x,x’715y,y’
+5x,x' 5y’y/+1+ 5X,x' 5yy - ) +fx,y+1,K"’+fX,y1,K’"))- (44)

[(xy).(x".y)eL, n,u eK]. (43 o o
In the original imaged given in Fig. 1, the value¥, ,.[f]
The energy function for=2 is rewritten as follows: (x,k" e K) are given in Table X, wher®, ,..[f] are defined
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by

Velfl= 2

1
(x y) L |:< fX,y,K_ Z(fx+1’y'Kn+ fX*l,y,K”+ fx,y+1,;<"

2
, (4.5

+ fx,yl,x”)) - EK,K"[f]

Eewlfl= 2

L ( fx,y,x_ Z(fx+ 1,y,;<”+ fxfl,y,x"+ fx,y+ 1.k"
\Y) e

+fx,y_viH)). (4.6

Since we see that the variangg /[ f] (k# k", k,k" €K) is

much larger tharV, ,[f] (ke K), we can regard the coeffi-
cientSRﬁ:’;’,‘w for the case ok # «” or of k" # " to be much

smaller tharﬂzi::: in the a priori probability density func-
tion p{F=f|{R:j,,’(',(m},v} for the original imagéd. If we con-
sider not only the coefficientR:::: but aIsoR:f’,;’f”i the
number of hyperparameters in thepriori probability den-
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sity function is 81 and it is much hard to calculate the opti-
mal point in the set of hyperparameters by means of the
evidence framework. In order to treat the most basic case, we

setRzil,’(',‘m= OO, «ma, o IN the present paper, as shown
in Egs. (2.4), (2.5, and(2.7). The matrixA(x,«’,«",«k")

has translational symmetry and then can be diagonalized by
means of the unitary matri¥ in Eq. (2.16) as follows:

<p,q,/.L|U71A(K,K,,K”,K”’)U|p,,q,,/.l,,>

1
:5p'p/5q’q7>< 5K,M5K/,M,_EaK",MﬁKI”,#’
2m 21
X CO{ p)—i—co{—q) } 4.7
Ly |_y

Hence, it is also possible to treat the above generalized
probabilistic model by means of the evidence framework,
analytically, in the similar way to the present paper. It is a
future problem to investigate the efficiency of the extended
probabilistic color image processing with thepriori prob-
ability density function given in Eqg4.2) and(4.3).
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