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Solvable Markov random field model in color image restoration
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We propose a scheme for image restoration of full color images by means of a solvable probabilistic model
in the red-green-blue space. A special case of our solvable probabilistic model is equivalent to a multicompo-
nent Gaussian model in the statistical mechanics. Exact closed expressions of the evidence and the expectation
value of intensity at each pixel in our solvable probabilistic model can be obtained by using multidimensional
Gaussian integral formulas and a discrete Fourier transform. In the present paper, the degradation process is
assumed to be an additive white Gaussian noise. Hyperparameters are determined so as to maximize the
evidence that is expressed in terms of the partition function in our solvable probabilistic model. This work is
a pioneering work for the Bayesian approach to the color image restoration by means of the statistical-
mechanical technique.
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I. INTRODUCTION

Probabilistic image processing is a very powerful a
proach and hence not only computer and mathematical
entists but also statistical physicists are interested in suc
approach@1#. In the probabilistic image processing, a prob
bilistic model is constructed by means of Bayes statistics
usually has a Gibbs distribution. It was suggested that
probabilistic image processing has a very close relations
to the spin glass theory in statistical mechanics@1#. Geman
and co-workers@2,3# proposed a formulation for image re
toration by means of Bayes statistics and the simulated
nealing. Their model is based on a Markov random field
which the state of a pixel depends only on the states o
nearest neighbor pixels@2#. Many investigations by the
Bayesian approaches in terms of the Markov random fie
were done to more practical applications in the image p
cessing@4,5#.

Color image processing is one of fundamental and in
esting problems in image and vision computing. Angelop
los and Pitas@6# dealt with a design of multichannel Wiene
filter, which is a familiar technique in the image processi
for color image restoration based on a multichannel auto
gressive model. Panjwani and Healey@7# proposed an unsu
pervised segmentation algorithm for color textures by us
a Markov random field~MRF! model with interactions be
tween different color planes in theRGB space. Here the
notationsR, G andB mean red, green, and blue, respective
Recently, some algorithms for color image segmentat
based on the maximuma posterioriestimation in MRF mod-
els were also proposed in anL* u* v* space, which is related
to the RGB values by nonlinear transformations@8,9#. The
componentsu* andv* carry the chromatic information an
the other componentL* can be regarded as the informatio
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for brightness@10#. However, a color image restoration alg
rithm by using MRF models has not been proposed ye
any color space.

Some statistical physicists were also interested in
Bayesian information processing by means of a solva
probabilistic model. Vicenteet al. @11# studied a belief
propagation algorithm for error-correcting codes by means
a solvable Ising model on a cactus tree. Nishimori and Wo
@12# studied a performance of Bayesian image processing
means of an infinite range Ising model with random exter
fields and uniform interactions. They suggested that the h
est performance of Bayesian image processing is given
the Nishimori line for each probabilistic model from an exa
inequality and some detailed calculations by using the r
lica method. Nishimori@13# showed also that the Gaussia
model is applicable to image restoration in gray-level mon
chrome images and that image restoration framework
means of maximuma posterioriestimation in the Gaussia
model is equivalent to the Wiener filter. Molina@14# pre-
sented some iterative algorithms for a hyperparameter e
mation of a probabilistic model, in which thea priori prob-
ability is assumed to be a conditional autoregressive~CAR!
model or a simultaneous autoregressive~SAR! model, in the
aid of a saddle point approximation. The CAR model
equivalent to the Gaussian model in the statistical mechan
Tanaka and Inoue@15# suggested that the expressions
some statistical quantities in both CAR and SAR models
be exactly given by using the multidimensional Gauss
integral formulas and the discrete Fourier transform. Th
extended such a solvable probabilistic model to more gen
solvable probabilistic models and gave an exact closed
pression of evidence to estimate some hyperparameters
from a given degraded image.

In this paper, we propose a scheme for the image rest
tion of full color images by means of a solvable probabilis
model in theRGB space by extending the solvable proba
listic model for the monochrome image restoration given
Tanaka and Inoue@15#. In order to discuss about the mo
fundamental problem in color image restorations and cla
©2002 The American Physical Society42-1
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their nature, we restrict our degradation process to an a
tive white Gaussian noise, which is one of the most popu
degradation models in image processing. In Sec. II, we c
struct a solvable probabilistic model for the image resto
tion of color images and derive an exact expression of e
dence to estimate hyperparameters and that of
expectation value of intensity of each component in a co
at each pixel. In Sec. III, a practical algorithm and som
numerical experiments are given. Concluding remarks
given in Sec. IV.

II. SOLVABLE PROBABILISTIC MODEL FOR COLOR
IMAGE RESTORATION

We consider a color image on a square latticeL
5$(x,y)u x50,1, . . . ,Lx21, y50,1, . . . ,Ly21%. The lat-
tice is assumed to consist ofuL u pixels and to satisfy the
periodic boundary conditions, so that the lattice is on a to
Three components corresponding to three colors, nam
red, green, and blue, in a digital color image are assigne
each pixel. The colors on a pixel (x,y) in an original image
and in a degraded image are denoted by

fWx,y[S f x,y,red

f x,y,green

f x,y,blue
D and gW x,y[S gx,y,red

gx,y,green

gx,y,blue
D ,

respectively. Now, we introduce the notationK defined by
K[$red,green,blue%. The configurations of the original im
age and of the given degraded image are representedf
5$ f x,y,ku(x,y)PL , kPK% and g5$gx,y,ku(x,y)PL , k
PK%, respectively. Each variablef x,y,k and gx,y,k take any
real number in the interval (2`,1`). In recovering the
original imagef from the given degraded imageg, we use
somea priori properties of the original imagef. We express
sets of random variables representing the original and
degraded image byF5$Fx,y,ku(x,y)PL , kPK% and G
5$Gx,y,ku(x,y)PL , kPK%, respectively.

We adopt an additive white Gaussian noiseN@0,s2# so
that the conditional probability density function Pr$G5guF
5f,s% is assumed to be

Pr$G5guF5f,s%[
1

Znoise~s!
expS 2

1

2s2
uug2fuu2D ,

~2.1!

where

Znoise~s![~2ps2!3zL z/2, ~2.2!

uug2fuu2[ (
(x,y)PL

(
kPK

~gx,y,k2 f x,y,k!2. ~2.3!

Henceuu•uu2 is the square norm.
The a priori probability density function for the origina

imagef is assumed to be
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Pr$F5fua,n%[
1

Zprior~a,n!

3expS 2
1

2 (
kPK

(
k8PK

ak,k8
8 fTC~k,k8!nfD ,

~2.4!

where

Zprior~a,n![E expS 2
1

2 (
kPK

(
k8PK

ak,k8z
TC~k,k8!nzD dz.

~2.5!

Here fT is the transpose of vectorf, and ak,k8 and n are
hyperparameters. The integral is defined by

E dz[E
2`

1`E
2`

1`

•••E
2`

1`

3 )
(x,y)PL

dzx,y,reddzx,y,greendzx,y,blue. ~2.6!

C(k,k8) (k,k8PK ) is a 3uL u33uL u matrix whose
(x,y,mux8,y8,m8) element is defined by

^x,y,muC~k,k8!ux8,y8,m8&

[dk,mdk8,m83S dx,x8dy,y82
1

4
dx,x811dy,y8

2
1

4
dx,x821dy,y82

1

4
dx,x8dy,y8112

1

4
dx,x8dy,y821D

@~x,y!,~x8,y8!PL , m,m8PK #. ~2.7!

Here dx,y is Kronecker’s delta. In the case ofn52, the a
priori probability density function is equivalent to the one
the multichannel SAR model characterized by

fWx,y2
1

4
~ fWx11,y1 fWx21,y1 fWx,y111 fWx,y21!;N @0W ,a21#.

~2.8!

Here, 0W is the three-dimensional zero vector andN @0W ,a21#
is a three-dimensional Gaussian distribution whose aver
of each component is zero and covariant matrix isa21. The
energy function of the multichannel SAR model is rewritt
as follows:
2-2
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1

2 (
kPK

(
k8PK

ak,k8f
TC~k,k8!2f

5 (
(x,y)PL

(
kPK

(
k8PK

ak,k8S f x,y,k2
1

4
~ f x11,y,k1 f x21,y,k

1 f x,y11,k1 f x,y21,k! D S f x,y,k82
1

4
~ f x11,y,k81 f x21,y,k8

1 f x,y11,k81 f x,y21,k8! D . ~2.9!

In the case ofn51, thea priori probability density function
is equivalent to the one of the multichannel CAR model
follows:

fWx,y2 fWx11,y;N @0W ,a21#, fWx,y2 fWx,y11;N @0W ,a21#.

~2.10!

The energy function of the multi-channel CAR model is r
written as follows:

1

2 (
kPK

(
k8PK

ak,k8f
TC~k,k8!f

5 (
(x,y)PL

(
kPK

(
k8PK

ak,k8@~ f x,y,k2 f x11,y,k!

3~ f x,y,k82 f x11,y,k8!1~ f x,y,k2 f x,y11,k!

3~ f x,y,k82 f x,y11,k8!#. ~2.11!

Equations~2.10! and ~2.8! mean that the coefficientsak,k8
(kÞk8) express the correlation between the different co
planes in theRGB picture information. We remark that bot
SAR and CAR models for the monochrome image resto
tion have been proposed by Molina@14#.

In the Bayes formula, thea posterioriprobability density
function Pr$F5fuG5g,a,n,s%, that the original image isf
when the given degraded image isg, is expressed as

Pr$F5fuG5g,a,n,s%

5
Pr$G5guF5f,s%Pr$F5fua,n%

E Pr$G5guF5z,s%Pr$F5zua,n%dz
. ~2.12!

An estimate of hyperparametersa, n, ands is determined so
as to maximize the evidence Pr$G5gua,n,s% @16–18#:

Pr$G5gua,n,s%[E Pr$G5guF5z,s%Pr$F5zua,n%dz.

~2.13!

The maximizers of evidence Pr$G5gua,n,s% are denoted by
â, n̂, andŝ, such that
04614
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~â,n̂,ŝ !5arg max
(a,n,s)

Pr$G5gua,n,s%. ~2.14!

For the obtained estimatesâ, n̂, and ŝ, the restored image
f̂[$ f̂ x,y,ku(x,y)PL , kPK% is determined by

f̂ x,y,k[E zx,y,k Pr$F5zuG5g,â,n̂,ŝ%dz

@~x,y!PL , kPK #. ~2.15!

By introducing the unitary matrixU defined by

^x,y,kuUup,q,k8&[
1

AuL u
expS 2 i

2ppx

Lx
2 i

2pqy

Ly
D ,

~2.16!

the matrixC(k,k8) can be diagonalized as follows:

^p,q,muU21C~k,k8!Uup8,q8,m8&

5dk,mdk8,m8dp,p8dq,q8l~p,q!

@~p,q!,~p8,q8!PL ,m,m8PK #, ~2.17!

where

l~p,q![12
1

2
cosS 2pp

Lx
D2

1

2
cosS 2pq

Ly
D , ~2.18!

andZprior(a,n) can be expressed in the following form:

Zprior~a,n!

5~2p!3uL u/2H detS (
kPK

(
k8PK

ak,k8C~k,k8!nD J 21/2

5~2p!3uL u/2 )
(p,q)PL

$l~p,q!3n det~a!%21/2,

~2.19!

where

a[S a red,red a red,green a red,blue

agreen,red agreen,green agreen,blue

ablue,red ablue,green ablue,blue
D . ~2.20!

By substituting Eqs.~2.1! and~2.4! to Eq. ~2.12!, thea pos-
teriori probability density function is obtained as follows:
2-3
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Pr$F5fuG5g,a,n,s%5
1

Zposterior~a,n,s!
exp@2H~ fug,a,n,s!#, ~2.21!

where

Zposterior~a,n,s![E exp@2H~zug,a,n,s!#dz, ~2.22!

and

H~ fug,a,n,s![
1

2s2
uuf2guu21

1

2
f TS (

kPK
(

k8PK
ak,k8C~k,k8!nD f

5
1

2s2 F2fS I1s2 (
kPK

(
k8PK

ak,k8C~k,k8!nD 21

gGTS I1s2 (
kPK

(
k8PK

ak,k8C~k,k8!nD
3F f2S I1s2 (

kPK
(

k8PK
ak,k8C~k,k8!nD 21

gG
1

1

2
gTS (

kPK
(

k8PK
ak,k8C~k,k8!nD S I1s2 (

kPK
(

k8PK
ak,k8C~k,k8!nD 21

g. ~2.23!

The partition functionZposterior(a,n,s) is expressed in the following form:

Zposterior~a,n,s!5~2ps2!3uL u/2H detS I1s2 (
kPK

(
k8PK

ak,k8C~k,k8!nD J 21/2

3expH 2
1

2
gTS (

kPK
(

k8PK
ak,k8C~k,k8!nD S I1s2 (

kPK
(

k8PK
ak,k8C~k,k8!nD 21

gJ
5~2ps2!3zL z/2 )

(p,q)PL
$det@e1l~p,q!na#%21/2

3expH 2
1

2 (
(p,q)PL

$GW †~p,q!l~p,q!na@e1sl~p,q!na#21GW ~p,q!%J , ~2.24!

where

GW ~p,q!5S Gred~p,q!

Ggreen~p,q!

Gblue~p,q!
D [

1

AuL u
(

(x,y)PL S gx,y,red

gx,y,green

gx,y,blue
D expS 2 i

2ppx

Lx
2 i

2pqy

Ly
D , ~2.25!

GW †~p,q![
1

AuL u
(

(x,y)PL
~gx,y,red,gx,y,green,gx,y,blue!expS i

2ppx

Lx
1 i

2pqy

Ly
D , ~2.26!

ande is a 333 unit matrix. By using Eqs.~2.2!, ~2.19!, and~2.24!, the logarithm of evidence can be expressed in the follow
form:
046142-4
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ln~Pr$G5gua,n,s%!5 lnS Zposterior~a,n,s!

Znoise~s!Zprior~a,n! D
52

3uL u
2

ln~2p!2
1

2
lnH detS I1s2 (

kPK
(

k8PK
ak,k8C~k,k8!nD J 1

1

2
lnH detS (

kPK
(

k8PK
ak,k8C~k,k8!nD J

2
1

2
gTS (

kPK
(

k8PK
ak,k8C~k,k8!nD S I1s2 (

kPK
(

k8PK
ak,k8C~k,k8!nD 21

g

52
3uL u

2
ln~2p!2

1

2 (
(p,q)PL

ln$det@e1s2l~p,q!na#%1
1

2 (
(p,q)PL

ln$det@l~p,q!na#%

2
1

2 (
(p,q)PL

GW †~p,q!l~p,q!na@e1s2l~p,q!na#21GW ~p,q!. ~2.27!
f

f
e

l-

for
ri-
as
rpa-
By replacing the summation 1/uL u( (p,q)PL by the integral
1/4p2*0

2pdu*0
2pdf, the third term in the right-hand side o

Eq. ~2.27! can be rewritten as follows:

1

2uL u (
(p,q)PL

ln$det@l~p,q!na#%

5
3n

2uL u (
(p,q)PL

ln@l~p,q!#1
1

2
ln@det~a!#

5
3n

8p2E0

2pE
0

2p

lnS 12
1

2
cosu

2
1

2
cosf Ddudf1

1

2
ln@det~a!#

523n ln~2!1
12nx

p
1

1

2
ln@det~a!#, ~2.28!

wherex is the Catalan constant, namely,x50.915 96 . . . .
For a fixed value ofn, the conditions for an extremum o
Pr$G5gua,n,s% at a5â and s5ŝ can be reduced to th
following simultaneous equations:

â215
1

uL u (
(p,q)PL

$l~p,q!n@e1ŝ2l~p,q!nâ#21%

1
1

uL u (
(p,q)PL

GW †~p,q!F ]

]ak,k8

$l~p,q!n

3a@e1ŝ2l~p,q!na#21%G
a5â

GW ~p,q!, ~2.29!
04614
ŝ25
1

3uL u (
(p,q)PL

tr$ŝ2@e1ŝ2l~p,q!nâ#21%

1
1

3uL u (
(p,q)PL

GW †~p,q!$ŝ4l~p,q!2n

3â2@e1ŝ2l~p,q!nâ#22%GW ~p,q!. ~2.30!

The restored imagef̂ in Eq. ~2.15! can be expressed as fo
lows:

f̂5S I1ŝ2 (
kPK

(
k8PK

âk,k8C~k,k8!n̂D 21

g, ~2.31!

so that we have

S f̂ x,y,red

f̂ x,y,green

f̂ x,y,blue

D 5
1

uL u (
(p,q)PL

@e1ŝ2l~p,q!n̂â#21

3FcosS 2ppx

Lx
1

2pqy

Ly
DReGW ~p,q!

1sinS 2ppx

Lx
1

2pqy

Ly
D Im GW ~p,q!G .

~2.32!

III. NUMERICAL EXPERIMENTS

In this section, we give some numerical experiments
the original images given in Fig. 1. In the numerical expe
ments, we treat the full color digital images with 24 bits
the original and the degraded images. The value of hype
rameters set in producing the degraded imageg in an addi-
tive white Gaussian noiseN@0,s2# is denoted by the notation
s* . The degraded imagesg produced from the original im-
agesf by settings* 540 in the degradation process~2.1! are
shown in Figs. 2~b! and 3~b!.
2-5



KAZUYUKI TANAKA AND TSUYOSHI HORIGUCHI PHYSICAL REVIEW E 65 046142
FIG. 1. ~Color! Original images.~a! Home.~b! Mandrill.
e

The estimates of hyperparametersâ, n̂, and ŝ are deter-

mined so as to maximize the logarithm of evidenc
ln(Pr$G5gua,n,s%), given by Eq.~2.27! and the restored
imagef̂ is obtained by using Eq.~2.32!. For a fixed value of
n, the practical algorithm for calculating

@â~n!,ŝ~n!#5arg max
(a,s)

Pr$G5gua,n,s% ~3.1!

is given as follows.
Step 1. Calculate the discrete Fourier transformGW (p,q) of

the given degraded imageg by means of Eq.~2.25!. Set r
←0,

a~0!←S 1 1
2

1
2

1
2 1 1

2

1
2

1
2 1

D

04614
,
andb(0)←1.

Step 2. Updater←r 11; and

a~r ![S ared,red~r ! ared,green~r ! ared,blue~r !

agreen,red~r ! agreen,green~r ! agreen,blue~r !

ablue,red~r ! ablue,green~r ! ablue,blue~r !
D

←S 1

uL u (
(p,q)PL

$l~p,q!n@b~r 21!e1l~p,q!n

3a~r 21!#21%1
1

uL u (
(p,q)PL

GW †~p,q!

3F ]

]a
$b~r 21!l~p,q!na@b~r 21!e
FIG. 2. ~Color! Image restoration.~a! De-
graded imageg generated from the original im-
agef in Fig. 1~a! by the additive white Gaussian

noiseN@0,402#. ~b! Restored imagef̂ for the pro-

posed model.~c! Restored imagef̂ for the multi-
channel CAR model (n51). ~d! Restored image

f̂ for the multichannel SAR model (n52).
2-6
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FIG. 3. ~Color! Image restoration.~a! De-
graded imageg generated from the original im
agef in Fig. 1~b! by the additive white Gaussian

noiseN@0,402#. ~b! Restored imagef̂ for the pro-

posed model.~c! Restored imagef̂ for the multi-
channel CAR model (n51). ~d! Restored image

f̂ for the multichannel SAR model (n52).
d

f

ga-
lso
ges
s in

ers

um

in
the
rent
ded
1l~p,q!na#21%G
a5a(r 21)

GW ~p,q! D 21

, ~3.2!

b~r !← 1

uL u (
(p,q)PL

tr$@b~r 21!e1l~p,q!na~r 21!#21%

1
1

uL u (
(p,q)PL

GW †~p,q!l~p,q!2na~r 21!2

3@b~r 21!e1l~p,q!na~r 21!#22GW ~p,q!, ~3.3!

c~r !←2
3uL u

2
ln~2p!2

1

2 (
(p,q)PL

ln$det@e1b~r !

3l~p,q!na~r !#%23n ln21
12nx

p

1
1

2
ln$det@a~r !#%2

1

2 (
(p,q)PL

GW †~p,q!l~p,q!n

3a@e1b~r !l~p,q!na~r !#21GW ~p,q!. ~3.4!

Step 3. Update ŝ(n)←Ab(r ), â(n)←a(r ), and R←r .
Stop if it is satisfied that

«~r ![ (
k5red,green,blue

(
k85red,green,blue

Uak,k8~r !2ak,k8~r 21!

ak,k8~r 21!
U

1Ub~r !2b~r 21!

b~r 21!
U,1024, ~3.5!
04614
and go to step 2 otherwise.
The logarithm of evidence lnr$G5guâ(n),n,ŝ(n)% is ob-

tained by using the following substitution:

L„g,â~n!,n,ŝ~n!…[
1

uL u
ln r$G5guâ~n!,n,ŝ~n!%←c~R!.

~3.6!

The convergence behavior of«(r ) in Eq. ~3.5! and the one of
c(r ) in Eq. ~3.4! are given in Figs. 4 and 5 for the degrade
images g given in Figs. 2~a! and 3~a! by setting n
51.356 00. The behavior of«(r ) shows the convergence o
a(r ) andb(r ) in the iterative procedure and the one ofc(r )
suggests the achievement of the maximization of the lo
rithm of evidence in the iterative procedure. We have a
checked numerically that the iteration procedure conver
to the same values irrespective of some different choice
the initial valuesa(0) andb(0) in the step 1 of the above
algorithm. Moreover, for various values of hyperparamet
a and s, the values ofL(g,a,n,s) calculated for the de-
graded imageg in Fig. 2~a! are given in Tables I and II.
Tables I and II show us the uniqueness of the maxim
point of the evidence with respect toa and s for a fixed
value of n. There are many choices for halting criterion
the above algorithm. In the present paper, we choose
simplest choice, because the same results for some diffe
choices in numerical experiments are obtained for a degra
imageg. We check not only Eq.~3.5! but also the following
criteria:
2-7
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(
k5red,green,blue

(
k85red,green,blue

@ak,k8~r !2ak,k8~r 21!#2

1@b~r !2b~r 21!#2,1024, ~3.7!

Uc~r !2c~r 21!

c~r !
U,1024, ~3.8!

and

@c~r !2c~r 21!#2,1024. ~3.9!

The number of iterations is the similar order asR for Eq.
~3.5!. In order to show the convergence of the iterative p
cedure~3.2! and ~3.3!, we give in Table III values ofŝ(n),
â(n), L„g,â(n),n,ŝ(n)…, andR, which are obtained by ap
plying the above practical algorithm for various values ofn
to the degraded imageg given in Fig. 2~b!. We check nu-
merically that the logarithm of evidence,L(g,a,n,s), has a
unique maximum value with respect to various values ofs,
n, anda for each degraded imageg as shown in Tables I–III.
In the proposed model, the estimates of hyperparametersâ,
ŝ, and n̂ are obtained by using the following substitution:

FIG. 4. Convergence of«(r ) in the iterative process for the
degraded imageg given in Figs. 2~a! and 3~a!. ~a! Home (n
51.356 00).~b! Mandrill (n51.017 00).
04614
-

â←â~ n̂ !, ŝ←ŝ~ n̂ !, ~3.10!

where

n̂←arg max
n

Pr$G5guâ~n!,n,ŝ~n!%. ~3.11!

In the numerical experiments, we calculate the values
â(n) andŝ(n) by means of the above algorithm for variou
values ofn and determine then̂ so as to maximize the loga
rithm of evidence,L„g,â(n),n,s(n)…, defined by Eq.~3.6!.
The evaluation of the valuen̂ in this procedure is explicitly
shown in Table III. For the obtained estimatesâ, n̂, and ŝ,
the restored imagef̂[$ f̂ x,y,k% is determined by

f̂ x,y,k← arg min
n50,1, . . . ,255

S n2E zx,y,k

3Pr$F5zuG5g,â,n̂,ŝ%dzD 2

. ~3.12!

The estimation of the restored imagef̂ in Eq. ~3.12! is called
thresholded posterior mean estimation@12,19,20#. The inte-

FIG. 5. Convergence ofc(r ) in the iterative process for the
degraded imageg given in Figs. 2~a! and 3~a!. ~a! Home (n
51.356 00).~b! Mandrill (n51.017 00).
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TABLE I. Values ofL(g,a,n,s) obtained for various values ofa red,red, a red,green, a red,blue, ands in the degraded imageg given in Fig.
2~a! when we setn51.356 00.

~a! agreen,green50.03452,ablue,blue50.02752,a red,green5agreen, red520.01495,
a red,blue5ablue, red50.00090,agreen,blue5ablue,green520.02318

a red,red a red,red a red,red a red,red a red,red a red,red a red,red

50.018 50.019 50.020 50.021 50.022 50.023 50.024

s530 210.077 210.084 210.092 210.100 210.108 210.116 210.123
s535 29.969 29.969 29.971 29.974 29.977 29.981 29.984
s540 29.971 29.967 29.966 29.966 29.967 29.968 29.969
s545 210.035 210.029 210.026 210.024 210.023 210.023 210.023
s550 210.133 210.126 210.122 210.119 210.117 210.116 210.115

~b! a red,red50.01951,agreen,green50.03452,ablue,blue50.02752,agreen,red520.01495,
a red,blue5ablue,red50.00090,agreen,blue5ablue,green520.02318

a red,green a red,green a red,green a red,green a red,green a red,green a red,green

520.017 520.016 520.015 520.014 520.013 520.012 520.011

s530 210.074 210.079 210.087 210.096 210.107 210.117 210.127
s535 29.971 29.969 29.970 29.972 29.977 29.981 29.986
s540 29.977 29.970 29.967 29.966 29.966 29.968 29.970
s545 210.042 210.033 210.027 210.024 210.023 210.023 210.023
s550 210.141 210.130 210.124 210.120 210.117 210.116 210.115

~c! a red,red50.01951,agreen,green50.03452,ablue,blue50.02752,a red,green5agreen,red520.01495,
ablue,red50.00090,agreen,blue5ablue,green520.02318

a red,blue a red,blue a red,blue a red,blue a red,blue a red,blue a red,blue

520.001 50.000 50.001 50.002 50.003 50.004 50.005

s530 210.076 210.081 210.088 210.096 210.105 210.114 210.123
s535 29.970 29.969 29.970 29.972 29.976 29.980 29.984
s540 29.973 29.968 29.966 29.966 29.966 29.968 29.969
s545 210.037 210.031 210.027 210.024 210.023 210.023 210.023
s550 210.136 210.128 210.123 210.120 210.118 210.116 210.116
ra
u-

-
er

(
f

ed

e-
lter
of
We
hite
grand of *zx,y,k Pr$F5zuG5g,â,n̂,ŝ%dz is calculated by
means of the right-hand side of Eq.~2.32! in Eq. ~2.21!. In
the CAR and the SAR model, the hyperparametern should
be set to 1 and 2, respectively. The estimates of hyperpa
eters,â andŝ, are obtained by using the following substit
tion:

n̂←1, â←â~1!, ŝ←ŝ~1! ~CAR model!,
~3.13!

and

n̂←2, â←â~2!, ŝ←ŝ~2! ~SAR model!,
~3.14!

for the CAR and the SAR model, respectively.
For the degraded imagesg obtained from the original im-

agesf in Fig. 1 by settings* 530, 40, and 50 in the degra
dation process~2.1!, the estimated values of hyperparamet
â, n̂, andŝ and the values of
04614
m-

s

E~ f, f̂![
1

3uL u
uuf2 f̂uu2

and

DSNR[10 log10S uuf2guu2

uuf2 f̂uu2
D ~dB!

are given in Table IV. For the case of the CAR modeln
51) and the SAR model (n52), the estimated values o
hyperparametersâ andŝ and the values ofE(f, f̂) andDSNR
are given in Tables V and VI, respectively. The degrad
imagesg and the restored imagef̂ for the original imagef in
s* 540 are given in Figs. 2 and 3.

Before closing this section, we give a comparison b
tween the present method and a familiar technique of fi
theory in image processing. As one of familiar methods
filter theory, we have a constrained least squares filter.
assume that the degradation process is the additive w
2-9
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TABLE II. Values of L(g,a,n,s) obtained for various values ofagreen,green, agreen,blue, ablue,blue, ands in the degraded imageg given
in Fig. 2~a! when we setn51.356 00.

~a! a red,red50.01951,ablue,blue50.02752,a red,green5agreen,red520.01495,a red,blue5ablue,red50.00090,agreen,blue5ablue,green520.02318
agreen,green agreen,green agreen,green agreen,green agreen,green agreen,green agreen,green

50.032 50.033 50.034 50.035 50.036 50.037 50.038

s530 210.080 210.075 210.082 210.093 210.105 210.117 210.129
s535 29.987 29.971 29.969 29.971 29.976 29.982 29.987
s540 29.998 29.976 29.968 29.966 29.966 29.968 29.971
s545 210.066 210.041 210.030 210.025 210.023 210.023 210.024
s550 210.167 210.140 210.127 210.121 210.118 210.116 210.116

~b! a red,red50.01951,agreen,green50.03452,ablue,blue50.02752,a red,green5agreen,red520.01495,
a red,blue5ablue,red50.00090,ablue,green520.02318

agreen,blue agreen,blue agreen,blue agreen,blue agreen,blue agreen,blue agreen,blue

520.025 520.024 520.023 520.022 520.021 520.020 520.019

s530 210.075 210.080 210.089 210.100 210.111 210.122 210.133
s535 29.971 29.969 29.970 29.974 29.979 29.984 29.990
s540 29.976 29.969 29.966 29.966 29.967 29.969 29.972
s545 210.041 210.031 210.026 210.024 210.023 210.023 210.024
s550 210.140 210.129 210.123 210.119 210.117 210.116 210.116

~c! a red,red50.01951,agreen,green50.03452,a red,green5agreen,red520.01495,a red,blue5ablue,red50.00090,agreen,blue5agreen,blue520.02318
ablue,blue ablue,blue ablue,blue ablue,blue ablue,blue ablue,blue ablue,blue

50.025 50.026 50.027 50.028 50.029 50.030 50.031

s530 210.076 210.076 210.083 210.092 210.101 210.111 210.120
s535 29.977 29.970 29.970 29.971 29.974 29.978 29.983
s540 29.985 29.973 29.968 29.966 29.966 29.967 29.969
s545 210.052 210.037 210.029 210.025 210.024 210.023 210.023
s550 210.151 210.135 210.126 210.121 210.119 210.117 210.116
Gaussian noise in Eq.~2.1!. When a degraded imageg is
given, the constrained least squares filter@23# is formulated
in the RGB space as follows:

f̂5arg min
z:uuz2guuk

2
5uL us* 2 ~kPK )

S (
kPK

uuC~k,k!zuu2D ,

~3.15!
04614
where

uuz2guuk
2[ (

(x,y)PL
~zx,y,k2gx,y,k!2. ~3.16!

By introduce Lagrange multipliersgk to ensure the con-
strained conditionuuz2guuk

25uL us* 2 and applying the dis-
crete Fourier transform to the matrixC(k,k), we have
S f̂ x,y,red

f̂ x,y,green

f̂ x,y,blue

D 5
1

uL u (
(p,q)PL S 1

11g redl~p,q!2
0 0

0
1

11ggreenl~p,q!2
0

0 0
1

11gbluel~p,q!2

D
3FcosS 2ppx

Lx
1

2pqy

Ly
DReGW ~p,q!1sinS 2ppx

Lx
1

2pqy

Ly
D Im GW ~p,q!G . ~3.17!
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TABLE III. Values of ŝ(n), â(n), L(g,â(n),n,ŝ(n)), and R obtained for various values ofn in the
degraded imageg given in Fig. 2~a!. Here,R is the number of iterations in the proposed algorithm.

n ŝ~n! â~n!5S â red,red â red,green â red,blue

âgreen,red âgreen,green âgreen,blue

âblue,red âblue,green âblue,blue

D L„g,â~n!,n,ŝ~n!… R

1.0 35.637 S 0.00514 20.00269 20.00057

20.00269 0.00708 20.00420

20.00057 20.00420 0.00654
D 29.96675 376

1.2 36.953 S 0.01079 20.00722 20.00025

20.00722 0.01734 20.01123

20.00025 20.01123 0.01464
D 29.95913 523

1.3560 37.570 S 0.01951 20.01495 0.00090

20.01495 0.03452 20.02318

0.00090 20.02318 0.02752
D 29.95767 653

1.4 37.713 S 0.02310 20.01829 0.00153

20.01829 0.04193 20.02837

0.00153 20.02837 0.03295
D 29.95777 692

1.6 38.253 S 0.05063 20.04548 0.00800

20.04548 0.10224 20.07092

0.00800 20.07092 0.07572
D 29.96030 883

1.8 38.677 S 0.11355 20.11331 0.02881

20.11331 0.25364 20.17874

0.02881 20.17874 0.17888
D 29.96525 1093

2.0 39.029 S 0.26091 20.28542 0.09199

20.28542 0.64120 20.45685

0.09199 20.45685 0.43440
D 29.97166 1320
fy

s
n
rs

o
hy-
s of
the
an
e a
in

l-
lter
. In
The Lagrange multipliersgk are determined so as to satis
the following equations:

gk5
s* 2

1

uL u (
(p,q)PL

uGk~p,q!u2
l~p,q!4

@11gkl~p,q!2#2

@kPK #.

~3.18!

For the degraded imagesg obtained from the original image
f in Fig. 1 by settings* 530, 40 and 50 in the degradatio
process~2.1!, the estimated values of Lagrange multiplie
g red, ggreen, andgblue, and the values ofE(f, f̂) andDSNR are
given in Table VII. The restored imagef̂ by means of the
04614
constrained least squares filter for the degraded imagesg in
Figs. 2~a! and 3~a! are given in Fig. 6. These results are to
blurred and it is shown that the results by our proposed
perparameter determination method constructed by mean
the maximization of evidence are better than those by
familiar filter theory. Though the constrained least me
square filter can be regarded as a linear filter, we hav
median filter and a mode filter as familiar nonlinear filters
signal processing. A vector median filter@24#, a generalized
vector directional filter@25# and an edge-preserved mode fi
ter @26# were proposed as an extension of the median fi
and the mode filter for vector-valued signals, respectively
a generalized vector directional filter@25#, we introduce a
quantityux,y as
2-11
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TABLE IV. Values of ŝ, n̂, â, E(f, f̂) andDSNR ~dB! for the proposed model.

s* ŝ
â5S â red,red â red,green â red,blue

âgreen,red âgreen,green âgreen,blue

âblue,red âblue,green âblue,blue
D n̂ E~ f, f̂! DSNR~dB!

~a! Home

30 28.728 S 0.02322 20.01705 0.00039

20.01705 0.03678 20.02410

0.00039 20.02410 0.02928D 1.40511 155.80 7.27648

40 37.570 S 0.01951 20.01495 0.00090

20.01495 0.03452 20.02318

0.00090 20.02318 0.02752D 1.35600 204.51 8.45540

50 45.836 S 0.01694 20.01347 0.00117

20.01347 0.03265 20.02203

0.00117 20.02203 0.02575D 1.31700 253.62 9.26676

~b! Mandrill

30 29.299 S 0.00697 20.00830 0.00390

20.00830 0.01755 20.01138

0.00390 20.01138 0.00961D 1.01800 304.91 4.34334

40 38.133 S 0.00634 20.00759 0.00376

20.00759 0.01692 20.01136

0.00376 20.01136 0.00982D 1.01700 416.86 5.35158

50 46.494 S 0.00622 20.00752 0.00393

20.00752 0.01743 20.01197

0.00393 20.01197 0.01049D 1.02400 519.96 6.14037
or

et

e,
-
rst

in-
ux,y5 (
(x8,y8)Pwx,y

A~gW x,y ,gW x8,y8!, ~3.19!

whereA(gW x,y ,gW x8,y8) denotes the angle between the vect
gW x,y and gW x8,y8 , 0<A(gW x,y ,gW x8,y8)<p and wx,y
[$(x8,y8)ux85x21,x,x11, y85y21,y,y11%. We define
an ordering of elements in the set$gW x8,y8u(x8,y8)Pwx,y% as
follows:

gW x,y
(1)<gW x,y

(2)<•••<gW x,y
(k)<•••<gW x,y

(9) , ~3.20!
04614
s

according to the ordering of elements in the s
$ux8,y8u(x8,y8)Pwx,y%,

ux,y
(1)<ux,y

(2)<•••<ux,y
(k)<•••<ux,y

(9) . ~3.21!

The first k terms of the ordering sequenc

$gW x8,y8
(1) ,gW x8,y8

(2) , . . . ,gW x8,y8
(k) %, constitute the output of the gen

eralized vector directional filter. We define the set of the fi
k terms of the ordering sequence$gW x,y

( i ) u i 51,2, . . . ,k%. From
the first k57 terms of the ordering sequence for each w
dow wx,y , the color (f̂ x,y,red, f̂ x,y,green, f̂ x,y,blue) for the re-
stored imagef̂ is determined by means of ana-trimmed
2-12
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TABLE V. Values of ŝ, â, E(f, f̂) andDSNR ~dB! for the multichannel CAR model (n51).

s* ŝ â5S â red,red â red,green â red,blue

âgreen,red âgreen,green âgreen,blue

âblue,red âblue,green âblue,blue

D E~ f, f̂!
DSNR~dB!

~a! Home

30 26.670 S 0.00594 20.00293 20.00081

20.00293 0.00709 20.00393

20.00081 20.00393 0.00654
D 176.82 6.72690

40 35.713 S 0.00514 20.00269 20.00057

20.00269 0.00708 20.00420

20.00057 20.00420 0.00654
D 227.12 7.99997

50 44.144 S 0.00466 20.00260 20.00039

20.00260 0.00732 20.00450

20.00039 20.00450 0.00668
D 276.16 8.89690

~b! Mandrill

30 29.172 S 0.00649 20.00753 0.00347

20.00753 0.01595 20.01030

0.00347 20.01030 0.00881
D 304.37 4.35106

40 38.006 S 0.00590 20.00688 0.00335

20.00688 0.01536 20.01027

0.00335 20.01027 0.00899
D 416.06 5.35991

50 46.307 S 0.00558 20.00651 0.00332

20.00651 0.01511 20.01033

0.00332 20.01033 0.00920
D 518.86 6.14950
I
r

or

ns
s
er.
means filter (a51/9) after re-ordering the set$gW x,y
( i ) u i

51,2, . . . ,k% for the magnitude. We give in Table VII
thevalues ofE(f, f̂) and DSNR in the generalized vecto
directional filter for the degraded imagesg obtained
from the original imagesf in Fig. 1 by settings* 530, 40,
and 50 in the degradation process~2.1!. We give in Fig. 7 the
restored imagef̂ by means of the generalized vect
04614
directional filter for the degraded imagesg in Figs. 2~a!
and 3~a!. We also did some numerical experiments by mea
of a vector median filter@24# and obtained worse result
than those by the generalized vector directional filt
In an edge-preserving filter@26#, we calculate the

restored imagez85$zWx,y8 u(x,y)PL% in theL* a* b* represen-
tation
zWx,y8 5

(
(x8,y8)PL

gW x8,y8
8 exp$2a@~x2x8!21~y2y8!2#2buugW x,y8 2gW x8,y8

8 uu%

(
(x8,y8)PL

exp$2a@~x2x8!21~y2y8!2#2buugW x,y8 2gW x8,y8
8 uu%

, ~3.22!
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TABLE VI. Values of ŝ, â, E(f, f̂) andDSNR ~dB! for the multichannel SAR model (n52).

s* ŝ â5S â red,red â red,green â red,blue

âgreen,red âgreen,green âgreen,blue

âblue,red âblue,green âblue,blue

D E~ f, f̂!
DSNR~dB!

~a! Home

30 30.000 S 0.20098 20.20533 0.05679

20.20533 0.44136 20.31119

0.05679 20.31119 0.30589
D 162.40 7.09628

40 39.030 S 0.26091 20.28542 0.09199

20.28542 0.64120 20.45685

0.09199 20.45685 0.43440
D 214.53 8.24766

50 47.416 S 0.33004 20.37709 0.13047

20.37709 0.85882 20.60620

0.13047 20.60620 0.56033
D 267.42 9.03658

~b! Mandrill

30 33.093 S 0.53472 21.09612 0.73344

21.09612 2.42766 21.68841

0.73344 21.68841 1.19876
D 379.64 3.39126

40 42.761 S 0.69536 21.47065 1.00241

21.47065 3.38804 22.39807

1.00241 22.39807 1.73028
D 544.34 4.19273

50 51.327 S 0.78080 21.68688 1.14999

21.68688 4.03726 22.86030

1.14999 22.86031 2.06781
D 683.62 4.95187
e

e
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after replacing the degraded imageg in the RGB represen-
tation by the imageg85$gW x,y8 u(x,y)PL% in theL* a* b* rep-

resentation@10#. The restored imagef̂ is obtained from the
image z8 by using the inverse transformation from th
L* a* b* representation to theRGB representation. We give
the values ofE(f, f̂) and DSNR in the edge-preserved mod
filter in Table IX for the degraded imagesg obtained from
the original imagesf in Fig. 1 by settings* 530, 40, and 50
in the degradation process~2.1!. The restored imagesf̂ by
means of the edge-preserved mode filter for the degra
imagesg in Figs. 2~a! and 3~a! are given in Fig. 8. In the
nonlinear filters, the edges tend to be preserved and are
too blurred; some noises also remain. It is shown that
results by our proposed hyperparameter determina
method constructed by means of the maximization of e
dence are better than those by the familiar linear filter the
and also by the familiar nonlinear filter theory.
04614
ed

ot
e
n

i-
y

IV. CONCLUDING REMARKS

In this paper, we have proposed a solvable MRF mo
for image restoration of full color images. The framework
the hyperparameter determination has been formulated
means of the maximization of evidence. The exact expr
sion of the evidence and the restored image for a given
graded image have been obtained. The deterministic e
tions for hyperparameters have been derived exactly.
proposed model includes both the multichannel CAR mo
and the multichannel SAR model for color image restorat
as a special case. Some noise could not be erased by
multichannel CAR model, while the most of all noises ha
been suppressed by the multichannel SAR model. On
other hand, the contours of the image remain by the mu
channel CAR model, though the restored image has b
blurred by the multi-channel SAR model. However, the p
posed probabilistic model gives good results for the ima
2-14
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restoration of full color images. In the restored image,
major contours are conserved and the most of all noises
erased.

All hyperparameters in our proposed probabilistic mo
are determined automatically only from a given degrad
image. Particularly, the hyperparameter

a5S a red,red a red,green a red,blue

agreen,red agreen,green agreen,blue

ablue,red ablue,green ablue,blue
D

expresses a correlation between different colors. One of
portant points of color image processing is how we trea
correlation and an interaction between different color plan
Actually, the results obtained in our numerical experime
show that the amplitude of interactions between differ
color planes has the similar order as the ones in the s
color planes.

In our numerical experiments, we have given a comp
son between the present method and some linear and no
ear filters@23–26#. We have shown that the results by o
proposed hyperparameter determination method constru
by means of the maximization of evidence are better t
those by the familiar filters. In the constrained least squa
filter given in Eq.~3.15!, it is difficult to treat correlations
between different planes in theRGB space, though we be
lieve that color images should have correlations between
ferent planes in theRGB space. Our proposed method in th
present paper can easily treat such correlations between
ferent planes in theRGB space, as a 333 matrix a. It is
interesting to compare the results by our proposed met
with the constrained least squares filter constructed in
other color representation where the different planes hav
correlation with each other. Angelopoulos and Pitas@6# dealt
with a design of multichannel Wiener filter in theRGB
space, based on a multichannel autoregressive model
familiar signal processing techniques. Their formulation
cluded correlations between different planes in theRGB
space. However, their main purpose is to design an opti
filter that gives us the least-square estimate of the orig
imagef and their method is based on the minimization o
statistical average in the mean square error between
04614
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original imagef and the degraded imageg. In designing their
optimal filter, they have to estimate a statistical correlat
between the original imagef and the degraded imageg. They
have used the original imagef to determine the coefficient
in their filter, which correspond to the hyperparameters
our proposed model. Moreover, we have compared the
sults by our proposed method with those by some nonlin
filters that are referred as the generalized vector directio
filter @25# and the edge-preserved mode filter@26#. In the
nonlinear filters, some noises still remain in the restored
ages and the mean square error is not so good though
edges are preserved.

Kato et al. @8# and Kang and Roh@9# constructed a proba
bilistic model not in theRGB space but in theL* u* v*
space for color image segmentation. It is known that
L* u* v* color space and theL* a* b* color space are simila
to human color perception capability@10#. In the Bayesian
approach of a probabilistic model for color image resto
tion, the degradation process and thea priori probability
distribution should be assumed in the same color spac
each other. If these probabilistic distributions are given in
different color space of each others, the corresponding
ergy function in thea posterioriprobability distribution has
very complicated structure and it is difficult to treat it an
lytically. It is easy to construct a solvable probabilist
model, which is corresponding to the proposed model, in
L* u* v* color space or in theL* a* b* color space if the
degradation process is given as an additive white Gaus
noise in theL* u* v* color space or in theL* a* b* color
space.

Moreover, a scheme proposed by Kang and Roh@9# in-
creases the performance of segmentation by introducing
only a smoothing factor but also an edge-preserving facto
the energy function. Also in the present model, the perf
mance of color image restoration can be increased by in
ducing an edge-preserving factor, for example, line fiel
Jeng and Woods@21,22# proposed a compound Gaus
Markov random field model which is constructed by intr
ducing line fields as Markov random fields to Gauss
model for gray-level monochrome image restoration a
showed that the model gives us high performance in im
restoration. However, it is difficult to treat such probabilis
e
TABLE VII. Values of g red, ggreen, gblue, E(f, f̂) and DSNR ~dB! in image restorations by using th
constrained least squares filter.

s* g red ggreen gblue E(f, f̂) DSNR ~dB!

~a! Home
30 35.035 23.593 41.527 242.99 5.34639
40 100.175 77.449 228.707 342.24 6.21913
50 510.726 502.799 2984.813 521.14 6.13898

~b! Mandrill
30 7.718 4.424 4.859 506.70 2.13748
40 24.024 10.641 13.788 642.96 3.46964
50 134.322 31.970 59.829 767.42 4.44971
2-15
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FIG. 6. ~Color! Image restorations by using
the constrained least squares filter.~a! Restored

imagef̂ for the degraded imageg in Fig. 2~a!. ~b!

Restored imagef̂ for the degraded imageg in Fig.
3~a!.

FIG. 7. ~Color! Image restorations by using
the generalized vector directional filter (k57, a

51/9). ~a! Restored imagef̂ for the degraded im-

ageg in Fig. 2~a!. ~b! Restored imagef̂ for the
degraded imageg in Fig. 3~a!.

FIG. 8. ~Color! Image restorations by using
the edge-preserved mode filter (a52.0, b

50.000 005 0).~a! Restored imagef̂ for the de-

graded imageg in Fig. 2~a!. ~b! Restored imagef̂
for the degraded imageg in Fig. 3~a!.
w
h

h
h

de

-

models with line fields or segmentation fields exactly and
have to employ a statistical-mechanical approximation. T
is left as a future problem.

In the present paper, we have assumed the additive w
Gaussian model as a degradation process. The additive w
Gaussian noise is the most popular noise. Generally, the
radation process treated in image processing is given by

gx,y,k2 (
(x8,y8)PL

(
k8PK

^kuB~ ux2x8u,uy2y8u!uk8& f x8,y8,k8

;N @0,s2# @~x,y!PL , kPK #. ~4.1!

Here,B(ux2x8u,uy2y8u) is a 333 matrix and denotes ab
lurring noise. On the other hand,N@0,s2# is an additive
04614
e
is

ite
ite
g-

TABLE VIII. Values of E(f, f̂) andDSNR ~dB! in image restora-
tions by using the generalized vector directional filter (k57, a
51/9).

s* E(f, f̂) DSNR ~dB!

~a! Home
30 422.01 2.94893
40 572.86 3.98198
50 756.19 4.52225

~b! Mandrill
30 953.80 20.60954
40 1095.81 1.15413
50 1264.30 2.28152
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white Gaussian noise. The case treated in the present p
corresponds to the one in settinĝ kuB(x,y)uk8&
5dx,0dy,0dk,k8 . It is believed that the additive white Gaus
ian noise given in Eq.~2.1! is realistic in the case that
degraded imageg is produced from an original image b
changing the grade of each pixel to another grade by a p
ability independently of the other pixels. For a more realis
application, we have to treat the degradation process~4.1!. In

TABLE IX. Values of E(f, f̂) and DSNR ~dB! in image restora-
tions by using the edge-preserved mode filter (a52.0, b
50.000 005 0).

s* E(f, f̂) DSNR ~dB!

~a! Home
30 293.26 4.52964
40 492.25 4.64058
50 740.90 4.61095

~b! Mandrill
30 435.35 2.79668
40 636.10 3.51619
50 883.57 3.83760
04614
per

b-
c

this general case, we have to estimate also the matrixB(x,y)
as hyperparameters. This is also left as a future problem

Finally, we explain a motivation of oura priori probabil-
ity density function in Eqs.~2.4!, ~2.5!, and ~2.7! and men-
tion a generalization of our proposed model. In the propo
model in the present paper, the expression of the evide
can be calculated analytically and the iterated algorithm
determine the hyperparameters can be given easily. As on
more general cases, we can consider the followinga priori
probability density function:

TABLE X. Values ofVk,k9@ f# (k,k95red,green,blue).

k95red k95green k95blue

~a! Home
k5red 100.97 1525.52 2643.45
k5green 1614.90 150.75 919.53
k5blue 2697.07 883.76 133.72

~b! Mandrill
k5red 546.98 3807.21 6099.80
k5green 3984.93 790.69 1853.35
k5blue 6283.69 1859.52 794.86
rˆF5fu$Rk,k8
k9,k-%,n‰[

expS 2
1

2 (
kPK

(
k8PK

(
k9PK

(
k-PK

Rk,k8
k9,k-fTA~k,k8,k9,k-!nfD

E expS 2
1

2 (
kPK

(
k8PK

(
k9PK

(
k-PK

Rk,k8
k9,k-zTA~k,k8,k9,k-!nzD dz

, ~4.2!
instead of Eqs.~2.4!, ~2.5!, and~2.7!. Here,A(k,k8,k9,k-)
(k,k8,k9,k-PK ) is a 3uL u33uL u matrix whose
(x,y,mux8,y8,m8) element is defined by

^x,y,muA~k,k8,k9,k-!ux8,y8,m8&

[dx,x8dy,y8dk,mdk8,m82
1

4
dk9,mdk-,m8

3~dx,x811dy,y81dx,x821dy,y8

1dx,x8dy,y8111dx,x8dy,y821!

@~x,y!,~x8,y8!PL , m,m8PK #. ~4.3!

The energy function forn52 is rewritten as follows:
1

2 (
kPK

(
k8PK

(
k9PK

(
k-PK

Rk,k8
k9,k-fTA~k,k8,k9,k-!2f

5 (
(x,y)PL

(
kPK

(
k8PK

(
k9PK

(
k-PK

Rk,k8
k9,k-

3S f x,y,k2
1

4
~ f x11,y,k91 f x21,y,k91 f x,y11,k9

1 f x,y21,k9! D S f x,y,k82
1

4
~ f x11,y,k-1 f x21,y,k-

1 f x,y11,k-1 f x,y21,k-! D . ~4.4!

In the original imagesf given in Fig. 1, the valuesVk,k9@ f#
(k,k9PK ) are given in Table X, whereVk,k9@ f# are defined
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by

Vk,k9@ f#[ (
(x,y)PL

F S f x,y,k2
1

4
~ f x11,y,k91 f x21,y,k91 f x,y11,k9

1 f x,y21,k9! D2Ek,k9@ f#G2

, ~4.5!

Ek,k9@ f#[ (
(x,y)PL

S f x,y,k2
1

4
~ f x11,y,k91 f x21,y,k91 f x,y11,k9

1 f x,y21,k9! D . ~4.6!

Since we see that the varianceVk,k9@ f# (kÞk9, k,k9PK ) is
much larger thanVk,k@ f# (kPK ), we can regard the coeffi

cientsRk,k8
k9,k- for the case ofkÞk9 or of k8Þk- to be much

smaller thanRk,k8
k,k8 in the a priori probability density func-

tion r$F5fuˆRk,k8
k9,k-%,n‰ for the original imagef. If we con-

sider not only the coefficientsRk,k8
k,k8 but also Rk,k8

k9,k-, the
number of hyperparameters in thea priori probability den-
a

s.

c

n

eo

al

d

04614
sity function is 81 and it is much hard to calculate the op
mal point in the set of hyperparameters by means of
evidence framework. In order to treat the most basic case

setRk,k8
k9,k-5dk,k9dk8,k-ak,k8 in the present paper, as show

in Eqs. ~2.4!, ~2.5!, and ~2.7!. The matrixA(k,k8,k9,k-)
has translational symmetry and then can be diagonalized
means of the unitary matrixU in Eq. ~2.16! as follows:

^p,q,muU21A~k,k8,k9,k-!Uup8,q8,m8&

5dp,p8dq,q83H dk,mdk8,m82
1

2
dk9,mdk-,m8

3FcosS 2pp

Lx
D1cosS 2pq

Ly
D G J . ~4.7!

Hence, it is also possible to treat the above generali
probabilistic model by means of the evidence framewo
analytically, in the similar way to the present paper. It is
future problem to investigate the efficiency of the extend
probabilistic color image processing with thea priori prob-
ability density function given in Eqs.~4.2! and ~4.3!.
.
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